Sum of Medians
3 seconds
256 megabytes
In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.
A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The
operator stands for taking the remainder, that is
stands for the remainder of dividing x by y.
To organize exercise testing quickly calculating the sum of medians for a changing set was needed.
The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.
Then each of n lines contains the description of one of the three operations:
- add x — add the element x to the set;
- del x — delete the element x from the set;
- sum — find the sum of medians of the set.
For any add x operation it is true that the element x is not included in the set directly before the operation.
For any del x operation it is true that the element x is included in the set directly before the operation.
All the numbers in the input are positive integers, not exceeding 109.
For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.
Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).
6
add 4
add 5
add 1
add 2
add 3
sum
3
14
add 1
add 7
add 2
add 5
sum
add 6
add 8
add 9
add 3
add 4
add 10
sum
del 1
sum
5
11
13
分析:单点修改+区间查询下标i%5=3的值的和;
暴力修改查询肯定慢了,所以考虑线段树;
怎么查询i%5=3的和呢?这是难点;
假设ret[rt][i]代表rt区间下标%5=i的和,sum[rt]代表rt区间的个数;
考虑到了rt节点,ret[rt][i](rt区间内下标%5=i的和)显然可以加上ret[lson][i],那么rson呢?
这个可以推一推,结论是加上ret[rson][(i-sum[lson]%5+5)%5];
所以线段树单点更新即可;
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <climits>
#include <cstring>
#include <string>
#include <set>
#include <bitset>
#include <map>
#include <queue>
#include <stack>
#include <vector>
#define rep(i,m,n) for(i=m;i<=n;i++)
#define mod 1000000007
#define inf 0x3f3f3f3f
#define vi vector<int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define ll long long
#define pi acos(-1.0)
#define pii pair<int,int>
#define sys system("pause")
const int maxn=1e5+;
const int N=1e3+;
using namespace std;
int id(int l,int r){return l+r|l!=r;}
ll gcd(ll p,ll q){return q==?p:gcd(q,p%q);}
ll qpow(ll p,ll q){ll f=;while(q){if(q&)f=f*p;p=p*p;q>>=;}return f;}
int n,m,k,t,sum[maxn<<],a[maxn],b[maxn],c[maxn],cnt;
ll ret[maxn<<][];
char op[];
void upd(int x,int y,int pos,int l,int r,int rt)
{
int i;
if(l==r)
{
sum[rt]+=x;
ret[rt][]+=y;
return;
}
int mid=l+r>>;
if(pos<=mid)upd(x,y,pos,l,mid,id(l,mid));
else upd(x,y,pos,mid+,r,id(mid+,r));
rep(i,,)ret[rt][i]=ret[id(l,mid)][i]+ret[id(mid+,r)][(i-sum[id(l,mid)]%+)%];
sum[rt]=sum[id(l,mid)]+sum[id(mid+,r)];
}
int main()
{
int i,j;
scanf("%d",&n);
rep(i,,n)
{
scanf("%s",op);
if(op[]=='s')a[i]=;
else if(op[]=='d')scanf("%d",&b[i]),a[i]=;
else scanf("%d",&b[i]),a[i]=,c[++cnt]=b[i];
}
sort(c+,c+cnt+);
cnt=unique(c+,c+cnt+)-c-;
rep(i,,n)
{
if(a[i]==)
{
upd(,b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else if(a[i]==)
{
upd(-,-b[i],lower_bound(c+,c+cnt+,b[i])-c,,cnt,id(,cnt));
}
else printf("%lld\n",ret[id(,cnt)][]);
}
return ;
}
Sum of Medians的更多相关文章
- codeforces 85D D. Sum of Medians 线段树
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 85D Sum of Medians
传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...
- Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树
题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...
- 数据结构(线段树):CodeForces 85D Sum of Medians
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces 85D Sum of Medians(线段树)
题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...
- codeforces 85D D. Sum of Medians Vector的妙用
D. Sum of Medians Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/problemset/prob ...
- Coderforces 85 D. Sum of Medians(线段树单点修改)
D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...
- CF85D Sum of Medians
CF85D Sum of Medians 题意翻译 一个集合,初始为空.现有三个操作: 1.add:向集合里加入数x,保证加入前集合中没有数x: 2.del:从集合中删除数x,保证删除前集合中有x: ...
- 85D Sum of Medians
传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...
随机推荐
- Android SDK Manager 无法更新问题(转载)
先看看如何加快更新速度,再说如何更新. 首先更新host文件,如图,打开目录 C:\Windows\System32\drivers\etc,在目录下有hosts文件 打开方式选用“记事本”打开 将一 ...
- PCB MS SQL 标量函数与表值函数(CLR) 实现文件与目录操作
一.C#写SQL SERVER(CLR)实现文件操作 标量函数: 文件移动 ,复制,检测文件存在,写入新文件文本,读取文本,创建目录,删除目录,检测目录是否存在 /// <summary> ...
- 【原创】Vue项目中各种功能的实现
已完成: 后台的管理功能: 这里用的组件是 element-UI ====> NavMenu ◆首先是排版 : <div class="manage-page fillcont ...
- Canvas和SVG的基础知识,以及两者的区别(小白)
首先我们来说一下Canvas是什么,它有什么作用以及它的知识点. Canvas是<HTML5>的新标签,它通常用于通过脚本(也就是JavaScript)来绘制图像.但是它本身并没有绘制能力 ...
- Django 内容回顾
模板 变量 {{ }} 标签 {% %} if elif else for empty forloop() with...as csrf_token 过滤器 default length add da ...
- ACM_Cipher(异或运算)
Cipher Time Limit: 2000/1000ms (Java/Others) Problem Description: 只剩两个小时就要正式开始第一次月赛了,大四师兄决定还是来出一道,找点 ...
- B-Tree 漫谈 (从二叉树到二叉搜索树到平衡树到红黑树到B树到B+树到B*树)
关于B树的学习还是需要做点笔记. B树是为磁盘或者其他直接存取辅助存储设备而设计的一种平衡查找树.B树与红黑树的不同在于,B树可以有很多子女,从几个到几千个.比如一个分支因子为1001,高度为2的B树 ...
- 关于处理移动端Vue单页面及其内嵌兼容问题
关于处理移动端Vue单页面及其内嵌兼容问题 question:由于最近转移了以前的H5项目,重构使用Vue单页面,导致部分手机内嵌或在微信浏览器中无法浏览,或者无法使用ajax请求:手机机型千变万化, ...
- [ USACO 2018 OPEN ] Out of Sorts (Gold)
\(\\\) \(Description\) 运行以下代码对一长为\(N\)的数列\(A\)排序,不保证数列元素互异: cnt = 0 sorted = false while (not sorted ...
- Java&Xml教程(六)使用JDOM解析XML文件
JDOM 提供了非常优秀的Java XML API来更方便的读取.修改.生成XML文档.JDOM还提供了包装类供用户从SAX.DOM.STAX事件解析.STAX流解析中选择具体的实现. 在本教程中,我 ...