HDU 5073 Galaxy(Anshan 2014)(数学推导,贪婪)
Galaxy
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 556 Accepted Submission(s): 127
Special Judge

To be fashionable, DRD also bought himself a galaxy. He named it Rho Galaxy. There are n stars in Rho Galaxy, and they have the same weight, namely one unit weight, and a negligible volume. They initially lie in a line rotating around their center of mass.
Everything runs well except one thing. DRD thinks that the galaxy rotates too slow. As we know, to increase the angular speed with the same angular momentum, we have to decrease the moment of inertia.
The moment of inertia I of a set of n stars can be calculated with the formula

where wi is the weight of star i, di is the distance form star i to the mass of center.
As DRD’s friend, ATM, who bought M78 Galaxy, wants to help him. ATM creates some black holes and white holes so that he can transport stars in a negligible time. After transportation, the n stars will also rotate around their new center of mass. Due to financial
pressure, ATM can only transport at most k stars. Since volumes of the stars are negligible, two or more stars can be transported to the same position.
Now, you are supposed to calculate the minimum moment of inertia after transportation.
For each test case, the first line contains two integers, n(1 ≤ n ≤ 50000) and k(0 ≤ k ≤ n), as mentioned above. The next line contains n integers representing the positions of the stars. The absolute values of positions will be no more than 50000.
2
3 2
-1 0 1
4 2
-2 -1 1 2
0
0.5
解题思路:选择保留区间长度为N - K的连续的数, 然后其余的K个数都移动到这N-K个数的中心。
那个式子事实上表示的是方差。选择的点越密集,方差越小,所以选择连续的N-K个。
其余的假设放到其它地方。肯定没有放到N-K的质心更优。
但这样每次枚举长度为N-K的区间。再计算对应的方差。复杂度为O(NK),会超时。所以通过数学推导变形,避免反复计算。详细例如以下:
第i个到第i+n-k-1个的
方差 = (Xi - X)^2 + (Xi+1 - X)^2 + ... + (Xi+n-k-1 - X)^2 (当中X表示Xi,Xi+1, ... , Xi+n-k-1的平均值)
= Xi^2 + Xi+1^2 + ... + Xi+n-k-1^2 - 2X(Xi + Xi+1 + ... Xi+n-k-1) (令sum2=Xi^2 + Xi+1^2 + ... + Xi+n-k-1^2,sum1=Xi+Xi+1+ ... +Xi+n-k-1)
= sum2 - sum1^2 / (n - k)
所以,排序后维护两种前缀,O(n)扫描。取方差的最小值就可以。
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std; const int MAXN = 50010;
const double INF = 1e20;
int n, k, nCase;
double p[MAXN], sum1[MAXN], sum2[MAXN], ans; void init() {
ans = INF;
sum1[0] = sum2[0] = 0.0;
} void input() {
scanf("%d%d", &n, &k);
for (int i = 1; i <= n; i++) {
scanf("%lf", &p[i]);
}
} void solve() {
if (n == k) {
printf("%.10lf\n", 0);
return;
}
sort(p+1, p+n+1);
for (int i = 1; i <= n; i++) {
sum1[i] = sum1[i-1] + p[i];
sum2[i] = sum2[i-1] + p[i]*p[i];
}
for (int i = 1; i <= k+1; i++) {
double s1 = sum1[i+n-k-1] - sum1[i-1];
double s2 = sum2[i+n-k-1] - sum2[i-1];
double tmp = s2 - s1*s1 / (n-k);
if (tmp < ans) ans = tmp;
} printf("%.10lf\n", ans);
} int main() {
scanf("%d", &nCase);
while (nCase--) {
init();
input();
solve();
}
return 0;
}
版权声明:本文博客原创文章,博客,未经同意,不得转载。
HDU 5073 Galaxy(Anshan 2014)(数学推导,贪婪)的更多相关文章
- hdu 5073 Galaxy(2014 鞍山现场赛)
Galaxy Time Limit: 2000/1000 MS (J ...
- HDU 5073 Galaxy (2014 Anshan D简单数学)
HDU 5073 Galaxy (2014 Anshan D简单数学) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5073 Description G ...
- hdu 5073 Galaxy(2014acm鞍山亚洲分部 C)
主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5073 Galaxy Time Limit: 2000/1000 MS (Java/Others) ...
- hdu 5073 Galaxy(2014acm鞍山亚洲分部 D)
主题链接:http://acm.hdu.edu.cn/showproblem.php? pid=5073 Galaxy Time Limit: 2000/1000 MS (Java/Others) ...
- 2014 Asia AnShan Regional Contest --- HDU 5073 Galaxy
Galaxy Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5073 Mean: 在一条数轴上,有n颗卫星,现在你可以改变k颗 ...
- HDU 5073 Galaxy 2014 Asia AnShan Regional Contest 规律题
推公式 #include <cstdio> #include <cmath> #include <iomanip> #include <iostream> ...
- HDU 5073 Galaxy(2014鞍山赛区现场赛D题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5073 解题报告:在一条直线上有n颗星星,一开始这n颗星星绕着重心转,现在我们可以把其中的任意k颗星星移 ...
- ACM学习历程—HDU 5073 Galaxy(数学)
Description Good news for us: to release the financial pressure, the government started selling gala ...
- hdu 5073 Galaxy 数学 铜牌题
0.5 题意:有n(n<=5e4)个质点位于一维直线上,现在你可以任意移动其中k个质点,且移动到任意位置,设移动后的中心为e,求最小的I=(x[1]-e)^2+(x[2]-e)^2+(x[3]- ...
随机推荐
- 【Codeforces Round #439 (Div. 2) A】The Artful Expedient
[链接] 链接 [题意] [题解] 暴力 [错的次数] 在这里输入错的次数 [反思] 在这里输入反思 [代码] #include <bits/stdc++.h> using namespa ...
- 【2047】求前n个完全数
Time Limit: 10 second Memory Limit: 2 MB 问题描述 完全数又称完数.完美数.完备数,是一些特殊的自然数,它所有真因子(即除自己以外的因子)的和等于它本身.例如: ...
- LVS负载均衡+动静分离+高可用(nginx+tomcat+keepalived)
文章目录 [隐藏] 一.环境介绍 二.环境安装 1.安装JDK 2.两台服务器安装tomcat 3.nginx安装 4.keepalive安装 三.负载均衡 四.动静分离 五.keepalive高可用 ...
- Nginx+Tomcat+Memcached实现会话保持(MSM)
会话保持的三种方式 Session sticky会话绑定:通过在前端调度器的配置中实现统一session发送至同一后发端服务器 Session cluster会话集群:通过配置Tomcat保持所有To ...
- php实现数值的整数次方
php实现数值的整数次方 一.总结 没有考虑到指数为负数的情况 二.php实现数值的整数次方 题目描述: 给定一个double类型的浮点数base和int类型的整数exponent.求base的exp ...
- P2P网络借贷系统-核心功能-用户投标-业务讲解
用户投标是P2P网络借贷系统的核心功能,相对比较复杂,为了更好地梳理业务和技术实现思路,特地详细总结分析下. 输入:用户id-uid,标的id-lid,投标金额-amount 1.根据lid,获得贷款 ...
- 【7.89%】【BNUOJ 52303】Floyd-Warshall
Time limit: 2 seconds Memory limit: 1024 megabytes In ICPCCamp, there are n cities and m (bidirectio ...
- 转载:使用bat命令来快速安装和卸载Service服务
一般我们在编写完Service服务程序后,都是通过cmd命令提示窗口来安装或卸载服务,但频繁的在cmd窗口中去“拼”文件的路径着实让人“不能忍”.所以,我们需要一钟“更快捷”的方式来进行安装或者卸载操 ...
- spring mvc 解决csrf跨站请求攻击
http://www.dewen.net.cn/q/935/spring+mvc+%E8%A7%A3%E5%86%B3csrf%E8%B7%A8%E7%AB%99%E8%AF%B7%E6%B1%82% ...
- The DOT Language
CSDN新首页上线啦,邀请你来立即体验! 立即体验 博客 学院 下载 更多 登录注册 The DOT Language 翻译 2014年04月15日 11:27:07 标签: EBNF / 语言 / ...