Decision Tree
Decision Tree builds classification or regression models in the form of a tree structure. It break down dataset into smaller and smaller subsets while an associated decision tree in incrementally developed at the same time.

Decision Tree learning use top-down recursive method. The basic idea is to construct one tree with a fastest declines of information entropy, the entropy value of all instance in each leaf nodes is zero. Each internal node of the tree corresponding to an attribute, and each leaf node corresponding to a class label.
Advantages:
- Decision is easy to explain. It results in a set of rules. It is the same approach as humans generally follow while making decisions.
- Interpretation of a complex Decision Tree can be simplified into visualization.It can be understood by everyone.
- It almost have no hyper-parameter.
Infomation Gain
- The entropy is:

- By the information entropy, we can calculate their Experience entropy:

where:

- we can also calculate their Experience conditions entropy:

- By the information entropy, we can calculate their information gain:

- Information gain ratio:

- Gini index:

For binary classification:

For binary classification and on the condition of feature A:

Three Building Algorithm
- ID3: maximizing information gain
- C4.5: maximizing the ratio of information gain
- CART
- Regression Tree: minimizing the square error.
- Classification Tree: minimizing the Gini index.
Decision Tree Algorithm Pseudocode
- Place the best attribute of the dataset at the root of tree.The way to the selection of best attribute is shown in Three Building Algorithm above.
- Split the train set into subset by the best attribute.
- Repeat Step 1 and Step 2 on each subset until you find leaf nodes in all the branches of the tree.
Random Forest
Random Forest classifiers work around that limitation by creating a whole bunch of decision trees(hence 'forest'), each trained on random subsets of training samples(bagging, drawn with replacement) and features(drawn without replacement).Make the decision tree work together to get result.
In one word, it build on CART with randomness.
Randomness 1:train the tree on the subsets of train set selected by
bagging(sampling with replacement).

- Randomness 2:train the tree on the subsets of features(sampling without replacement). For example, select 10 features from 100 features in dataset.

Randomness 3:add new feature by low-dimensional projection.

后记
装逼想用英文写博客,想借此锻炼自己的写作能力,无情打脸( ̄ε(# ̄)
Ref:https://clyyuanzi.gitbooks.io/julymlnotes/content/rf.html
http://www.saedsayad.com/decision_tree.htm
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
统计学习方法(李航)
Decision Tree的更多相关文章
- Spark MLlib - Decision Tree源码分析
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...
- 决策树Decision Tree 及实现
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报 分类: Data Mining(25) Pyt ...
- Gradient Boosting Decision Tree学习
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...
- 使用Decision Tree对MNIST数据集进行实验
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...
- Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...
- 用于分类的决策树(Decision Tree)-ID3 C4.5
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...
- OpenCV码源笔记——Decision Tree决策树
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...
- GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法
GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...
- Gradient Boost Decision Tree(&Treelink)
http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1. 什么是Treelink Treelink是阿里集团内部 ...
- (转)Decision Tree
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...
随机推荐
- Misultin, Mochiweb, Cowboy, NodeJS 及 Tornadoweb测评
http://www.oschina.net/translate/a-comparison-between-misultin-mochiweb-cowboy-nodejs-and-tornadoweb ...
- NOIP模拟 Pyramid - 斜率优化DP
题目大意: 给一个金字塔图(下面的宽度大于等于上面的宽度),每层的高度为1,从中选取k个互不重叠的矩形,使面积最大. 题目分析: \(f[i][j]\)表示选到第i层,选择了j个矩形的最优方案. 转移 ...
- 【32.89%】【codeforces 574D】Bear and Blocks
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Web自动化测试(全网最给力自动化教程)
http://www.cnblogs.com/zidonghua/p/7430083.html python+selenium自动化软件测试(第2章):WebDriver API 欢迎您来阅读和练手! ...
- 寄存器,cache、伙伴系统、内存碎片、段式页式存储管理
cache.伙伴系统.内存碎片.段式页式存储管理 目录 分层的存储管理 cache 局部性原理 置换算法 写回策略 linux环境下的cache 连续内存分配与内存碎片 内部碎片与外部碎片 动态分区分 ...
- MySQL日期 专题
一.MySQL 获得当前日期时间 函数 1.1 获得当前日期+时间(date + time)函数:now() mysql> select now();+--------------------- ...
- RGB值得计算公式
三原色分别为:红(Red).绿(Green).蓝(Blue). 颜色值=(Red)+(Green*256)+(Blue*256*256) //由三原色值合成颜色整数值 function ColorFr ...
- JS 禁止IE用右键
<!--组合键: -->IE的键盘监听最多只能作用于document上(window我试过不行)如果内嵌了iframe并且你的焦点在iframe上,那么按键无效 这里我用CTRL+Q写的例 ...
- WinEdt && LaTex(三)—— 宏包
amsmath:最常用的数学宏包 1. bm:bold math 数学字体加粗 \documentclass{article} \usepackage{bm} \begin{document} \[ ...
- Bootstrap 反色导航条
@{ Layout = null;}<!DOCTYPE html><html><head> <meta name="viewport&q ...