Decision Tree builds classification or regression models in the form of a tree structure. It break down dataset into smaller and smaller subsets while an associated decision tree in incrementally developed at the same time.

Decision Tree learning use top-down recursive method. The basic idea is to construct one tree with a fastest declines of information entropy, the entropy value of all instance in each leaf nodes is zero. Each internal node of the tree corresponding to an attribute, and each leaf node corresponding to a class label.
Advantages:

  • Decision is easy to explain. It results in a set of rules. It is the same approach as humans generally follow while making decisions.
  • Interpretation of a complex Decision Tree can be simplified into visualization.It can be understood by everyone.
  • It almost have no hyper-parameter.

Infomation Gain

  • The entropy is:
  • By the information entropy, we can calculate their Experience entropy:

    where:
  • we can also calculate their Experience conditions entropy:
  • By the information entropy, we can calculate their information gain:
  • Information gain ratio:
  • Gini index:

    For binary classification:

    For binary classification and on the condition of feature A:

Three Building Algorithm

  • ID3: maximizing information gain
  • C4.5: maximizing the ratio of information gain
  • CART
    • Regression Tree: minimizing the square error.
    • Classification Tree: minimizing the Gini index.

Decision Tree Algorithm Pseudocode

  • Place the best attribute of the dataset at the root of tree.The way to the selection of best attribute is shown in Three Building Algorithm above.
  • Split the train set into subset by the best attribute.
  • Repeat Step 1 and Step 2 on each subset until you find leaf nodes in all the branches of the tree.

Random Forest

Random Forest classifiers work around that limitation by creating a whole bunch of decision trees(hence 'forest'), each trained on random subsets of training samples(bagging, drawn with replacement) and features(drawn without replacement).Make the decision tree work together to get result.
In one word, it build on CART with randomness.

  • Randomness 1:train the tree on the subsets of train set selected by bagging(sampling with replacement).

  • Randomness 2:train the tree on the subsets of features(sampling without replacement). For example, select 10 features from 100 features in dataset.
  • Randomness 3:add new feature by low-dimensional projection.

后记

装逼想用英文写博客,想借此锻炼自己的写作能力,无情打脸( ̄ε(# ̄)

Ref:https://clyyuanzi.gitbooks.io/julymlnotes/content/rf.html
http://www.saedsayad.com/decision_tree.htm
http://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/
统计学习方法(李航)

Decision Tree的更多相关文章

  1. Spark MLlib - Decision Tree源码分析

    http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或ran ...

  2. 决策树Decision Tree 及实现

    Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Pyt ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. 使用Decision Tree对MNIST数据集进行实验

    使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Te ...

  5. Sklearn库例子1:Sklearn库中AdaBoost和Decision Tree运行结果的比较

    DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4 ...

  6. 用于分类的决策树(Decision Tree)-ID3 C4.5

    决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...

  7. OpenCV码源笔记——Decision Tree决策树

    来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以 ...

  8. GBDT(Gradient Boosting Decision Tree)算法&协同过滤算法

    GBDT(Gradient Boosting Decision Tree)算法参考:http://blog.csdn.net/dark_scope/article/details/24863289 理 ...

  9. Gradient Boost Decision Tree(&Treelink)

    http://www.cnblogs.com/joneswood/archive/2012/03/04/2379615.html 1.      什么是Treelink Treelink是阿里集团内部 ...

  10. (转)Decision Tree

    Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游 ...

随机推荐

  1. sklearn 特征降维利器 —— PCA & TSNE

    同为降维工具,二者的主要区别在于, 所在的包不同(也即机制和原理不同) from sklearn.decomposition import PCA from sklearn.manifold impo ...

  2. sparksql 用反射的方式将rdd转换成dataset/dataframe

    java public class ReflectionDemo { private static SparkConf conf = new SparkConf().setAppName(" ...

  3. htmlunit 模拟登录 无验证码

    1.模拟登录csdn,最开始的时候使用的是httpclient,网上的所有模拟登录csdn的版本都是找到lt/execution/event_id.连同用户名及密码 一起发送即可,但是目前的csdn的 ...

  4. leetcode先刷_Valid Sudoku

    我没有看到这个问题,这使其在现货需求数独,害怕一直没敢做.后来我发现原来的标题就是这么简单.推断现在只有数字全不符合的就可以了棋盘上的形势的要求. 是不是正确的三个周期..人是不能满意地看到每一行.每 ...

  5. C# 直接创建多个类和使用反射创建类的性能

    原文:C# 直接创建多个类和使用反射创建类的性能 本文告诉大家我对比的使用直接创建多个类和使用反射创建多个类的性能 在上一篇 C# 程序内的类数量对程序启动的影响 的基础上,继续做实验 现在创建 10 ...

  6. POJ - 1466 Girls and Boys 二分图+最大独立集

    标题效果:有着n学生,有一些同学之间的特殊关系.. .为了一探究竟m学生.要求m免两者之间的学生有没有这样的特殊关系 解决问题的思路:二分图的问题,殊关系是对称的.所以能够将两个点集都设置为n个点.求 ...

  7. Arcgis api for javascript学习笔记(4.5版本)-三维地图并叠加天地图标注

    1.三维地图实现 在官网的demo中就有三维地图的实现,如下图所示 <!DOCTYPE html> <html> <head> <meta charset=& ...

  8. spring-boot-quartz, 依赖spring-boot-parent good

    /** * state的值代表该任务触发器的状态: STATE_BLOCKED 4 // 运行 STATE_COMPLETE 2 //完成那一刻,不过一般不用这个判断Job状态 STATE_ERROR ...

  9. lua转换etcd应答

    local function decodeNodes(nodes) local table = {} for _, value in ipairs(nodes) do if value.nodes t ...

  10. 图解Http协议 url长度限制

    http请求报文的格式 一般请求所带有的属性: http响应报文的格式: 响应首部一般包含如下内容: 一.技术基石及概述 问:什么是HTTP? 答:HTTP是一个客户端和服务器端请求和响应的标准TCP ...