Round Numbers
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10223   Accepted: 3726

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

Source

题意:问在闭区间[n,m]中有多少个数是round numbers。所谓round numbers就是把闭区间中的某一个十进制的数字转换成二进制后0的个数大于等于1的个数,那么这个数就是round
numbers

<pre name="code" class="cpp">#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> using namespace std; int c[33][33] = {0};
int bin[35];
int n,m; void updata() ///计算n个里面取m个的方法数
{
for(int i=0;i<=32;i++)
{
for(int j=0;j<=i;j++)
{
if(j == 0 || i == j)
{
c[i][j] = 1;
}
else
{
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
}
}
} void upbin(int x) /// 将要求的数转化为二进制数而且逆序存储
{
bin[0] = 0;
while(x)
{
bin[++bin[0]] = x%2;
x = x / 2;
}
return ;
} int qurry(int x) ///计算0-n之间的Round Number的个数
{
int sum = 0;
upbin(x);
///求二进制长度小于len的全部二进制数中Round Number的个数
for(int i=1;i<bin[0]-1;i++)
{
for(int j=i/2+1;j<=i;j++)
{
sum += c[i][j];
}
}
int zero = 0;
///求二进制长度等于len的全部二进制数中Round Number的个数
for(int i=bin[0]-1;i>=1;i--)
{
if(bin[i]) ///当前位的值为1
{
for(int j=(bin[0]+1)/2-(zero+1);j<=i-1;j++) ///看懂这里即可了
{
sum += c[i-1][j];
}
}
else
{
zero++;
}
}
return sum;
} int main()
{
updata();
scanf("%d%d",&n,&m);
printf("%d\n",qurry(m+1)-qurry(n));
return 0;
}

POJ 3252 Round Numbers(组合数学)的更多相关文章

  1. POJ 3252 Round Numbers 组合数学

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13381   Accepted: 5208 Description The ...

  2. POJ 3252 Round Numbers(组合)

    题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...

  3. POJ 3252 Round Numbers

     组合数学...(每做一题都是这么艰难) Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7607 A ...

  4. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  5. [ACM] POJ 3252 Round Numbers (的范围内的二元0数大于或等于1数的数目,组合)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8590   Accepted: 3003 Des ...

  6. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  7. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  8. POJ - 3252 - Round Numbers(数位DP)

    链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...

  9. poj 3252 Round Numbers 【推导·排列组合】

    以sample为例子 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1] 即:Rn[start,finish]=Rn[0,finish]-R ...

随机推荐

  1. caioj 1084 动态规划入门(非常规DP8:任务安排)(取消后效性)

    这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加 ...

  2. caioj 1080 动态规划入门(非常规DP4:乘电梯)(dp数组更新其他量)

    我一开始是这么想的 注意这道题数组下标是从大到小推,不是一般的从小到大推 f[i]表示从最高层h到第i层所花的最短时间,答案为f[1] 那么显然 f[i] = f[j] + wait(j) + (j ...

  3. caioj 1075 动态规划入门(中链式2:能量项链)(中链式dp总结)

    我又总结了一种动归模型-- 这道题和上一道题很类似,都是给一个序列,然后相邻的元素可以合并 然后合并后的元素可以再次合并 那么就可以用这两道题类似的方法解决 简单来说就是枚举区间,然后枚举断点 加上断 ...

  4. ArcGIS api for javascript——以地理处理结果为条件查询地图

    这里发生什么任务呢?当第一次单击地图,单击的坐标被发送到一个Geoprocessor任务.该任务访问服务器上的通过ArcGIS Server 地理处理服务提供的可用的GIS模型.本例中模型计算驱动时间 ...

  5. 积跬步,聚小流------Bootstrap学习记录(2)

    现阶段开启每一次新的征程,已然离不开"Hello World"的习惯仪式.这次自然也不例外.先来看下给出的官网给出的演示样例: 1.bootstrap官网提供的html基本模板代码 ...

  6. 改动npm包管理器的registry为淘宝镜像(npm.taobao.org)

    起因 安装了node.安装了npm之后,官方的源实在是 太慢了! 看了看淘宝的npm镜像, http://npm.taobao.org/  居然说让我再下载一个cnpm,要不然就每次都得install ...

  7. 8.不绑定(ngNonBindable)

    转自:https://www.cnblogs.com/best/tag/Angular/ ngNonBindable指令告诉Angular编译或绑定当前DOM元素的内容.这对于要求Angular忽略那 ...

  8. android学习笔记五。2、其他组件

    一.ContentProvider内容提供者.是是android中一个应用向第三方共享数据的方式,android中的联系人,sms(短信记录)等都是通过这一方式来向外提供的 1.使用: 在应用中使用C ...

  9. Multi-process Resource Loading

    For Developers‎ > ‎Design Documents‎ > ‎ Multi-process Resource Loading 目录 1 This design doc n ...

  10. MHP 宿舍摄像头在门卫显示方案

    通过VPN拨入公司内网,实现访问外网摄像头. 1.  宿舍和MHP公司各增加一条上网线路(可用移动) 2.宿舍处理:  2台带TF卡 摄像头,加入到萤石云端   130万摄像头+64G TF卡 3.宿 ...