Round Numbers
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 10223   Accepted: 3726

Description

The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, Paper, Stone' (also known as 'Rock, Paper, Scissors', 'Ro, Sham, Bo', and a host of other names) in order to make arbitrary decisions such as who gets to be milked first.
They can't even flip a coin because it's so hard to toss using hooves.

They have thus resorted to "round number" matching. The first cow picks an integer less than two billion. The second cow does the same. If the numbers are both "round numbers", the first cow wins,

otherwise the second cow wins.

A positive integer N is said to be a "round number" if the binary representation of N has as many or more zeroes than it has ones. For example, the integer 9, when written in binary form, is 1001. 1001 has two zeroes and two ones; thus,
9 is a round number. The integer 26 is 11010 in binary; since it has two zeroes and three ones, it is not a round number.

Obviously, it takes cows a while to convert numbers to binary, so the winner takes a while to determine. Bessie wants to cheat and thinks she can do that if she knows how many "round numbers" are in a given range.

Help her by writing a program that tells how many round numbers appear in the inclusive range given by the input (1 ≤ Start < Finish ≤ 2,000,000,000).

Input

Line 1: Two space-separated integers, respectively Start and Finish.

Output

Line 1: A single integer that is the count of round numbers in the inclusive range Start..Finish

Sample Input

2 12

Sample Output

6

Source

题意:问在闭区间[n,m]中有多少个数是round numbers。所谓round numbers就是把闭区间中的某一个十进制的数字转换成二进制后0的个数大于等于1的个数,那么这个数就是round
numbers

<pre name="code" class="cpp">#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<stdlib.h> using namespace std; int c[33][33] = {0};
int bin[35];
int n,m; void updata() ///计算n个里面取m个的方法数
{
for(int i=0;i<=32;i++)
{
for(int j=0;j<=i;j++)
{
if(j == 0 || i == j)
{
c[i][j] = 1;
}
else
{
c[i][j] = c[i-1][j-1] + c[i-1][j];
}
}
}
} void upbin(int x) /// 将要求的数转化为二进制数而且逆序存储
{
bin[0] = 0;
while(x)
{
bin[++bin[0]] = x%2;
x = x / 2;
}
return ;
} int qurry(int x) ///计算0-n之间的Round Number的个数
{
int sum = 0;
upbin(x);
///求二进制长度小于len的全部二进制数中Round Number的个数
for(int i=1;i<bin[0]-1;i++)
{
for(int j=i/2+1;j<=i;j++)
{
sum += c[i][j];
}
}
int zero = 0;
///求二进制长度等于len的全部二进制数中Round Number的个数
for(int i=bin[0]-1;i>=1;i--)
{
if(bin[i]) ///当前位的值为1
{
for(int j=(bin[0]+1)/2-(zero+1);j<=i-1;j++) ///看懂这里即可了
{
sum += c[i-1][j];
}
}
else
{
zero++;
}
}
return sum;
} int main()
{
updata();
scanf("%d%d",&n,&m);
printf("%d\n",qurry(m+1)-qurry(n));
return 0;
}

POJ 3252 Round Numbers(组合数学)的更多相关文章

  1. POJ 3252 Round Numbers 组合数学

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13381   Accepted: 5208 Description The ...

  2. POJ 3252 Round Numbers(组合)

    题目链接:http://poj.org/problem?id=3252 题意: 一个数的二进制表示中0的个数大于等于1的个数则称作Round Numbers.求区间[L,R]内的 Round Numb ...

  3. POJ 3252 Round Numbers

     组合数学...(每做一题都是这么艰难) Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7607 A ...

  4. POJ 3252 Round Numbers 数学题解

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  5. [ACM] POJ 3252 Round Numbers (的范围内的二元0数大于或等于1数的数目,组合)

    Round Numbers Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8590   Accepted: 3003 Des ...

  6. poj 3252 Round Numbers(数位dp 处理前导零)

    Description The cows, as you know, have no fingers or thumbs and thus are unable to play Scissors, P ...

  7. POJ 3252 Round Numbers(数位dp&amp;记忆化搜索)

    题目链接:[kuangbin带你飞]专题十五 数位DP E - Round Numbers 题意 给定区间.求转化为二进制后当中0比1多或相等的数字的个数. 思路 将数字转化为二进制进行数位dp,由于 ...

  8. POJ - 3252 - Round Numbers(数位DP)

    链接: https://vjudge.net/problem/POJ-3252 题意: The cows, as you know, have no fingers or thumbs and thu ...

  9. poj 3252 Round Numbers 【推导·排列组合】

    以sample为例子 [2,12]区间的RoundNumbers(简称RN)个数:Rn[2,12]=Rn[0,12]-Rn[0,1] 即:Rn[start,finish]=Rn[0,finish]-R ...

随机推荐

  1. 学习《深度学习入门:基于Python的理论与实现》高清中文版PDF+源代码

    入门神经网络深度学习,推荐学习<深度学习入门:基于Python的理论与实现>,这本书不来虚的,一上来就是手把手教你一步步搭建出一个神经网络,还能把每一步的出处讲明白.理解神经网络,很容易就 ...

  2. Python对象引用的所有权

    目录 引用所有权 传递引用的所有权--返回值 出借引用的所有权--返回值 占据引用的所有权--参数 出借引用的所有权--参数 引用所有权 谁持有对象引用的所有权,谁就要对对象负责. 引用的所有权对函数 ...

  3. 紫书 习题 10-4 UVa 1644(素数筛)

    素数筛没什么好说的 #include<cstdio> #include<vector> #include<cstring> #define REP(i, a, b) ...

  4. Spring拦截器 /* 和 /** 的区别

    SpringMVC 拦截器拦截 /* 和 /** 的区别: /* : 匹配一级,即 /add , /query 等 /** : 匹配多级,即 /add , /add/user, /add/user/u ...

  5. 【Codeforces Round #422 (Div. 2) C】Hacker, pack your bags!(二分写法)

    [题目链接]:http://codeforces.com/contest/822/problem/C [题意] 有n个旅行计划, 每个旅行计划以开始日期li,结束日期ri,以及花费金钱costi描述; ...

  6. .Net 路由处理厉害了

    通过设置路由,可以灵活的显示地址内容.它会自动转换为想要的控制器和方法中去. using System; using System.Collections.Generic; using System. ...

  7. HDU 4359 Easy Tree DP? 组合数学+动归

    题意:定义一种树,每个节点的权值都是20到2n-1,每个权值出现一次,每个节点的左子树的权值和小于右子树,除非只有一个子树.给你n和d,问有n个节点且恰好深度是d的这种树有多少种. 比赛的时候我没有做 ...

  8. 《读书报告 – Elasticsearch入门 》----Part II 深入搜索(2)

    第十三章 全文检索 这一章开始介绍 全文检索 :怎样对全文字段(full-text fields)进行检索以找到相关度最高的文档. 全文检索最重要的两个方面是: 相关度(Relevance) 根据文档 ...

  9. 有关R6034错误的思考

    作者:朱金灿 来源:http://blog.csdn.net/clever101 我们有时会遇到R6034错误,工程明明编译通过,但是运行时却出现: 网上的解决办法很多,但是有效的不多,特别是对阐述这 ...

  10. Snort企业部署实战

    Snort企业部署实战 1 背景       我们知道企业网络目前威胁来自两个位置:一个是内部,一个是外部.来自外部的威胁都能被防火墙所阻止,但内部攻击都不好防范.因为公司内部人员对系统了解很深且有合 ...