前言:
        一个完备的模式识别系统,必然包含一个模式识别模型,此外还要附加一个评价模型,以及为了构建识别模型而构建的学习模型,并选择在学习模型中使用的学习方法。

否则

 w=w

这样,)那样的δ递推,也就是灵敏度反向传播回来。另外,需要乘以输入patch与输出像素之间连接的权值,这个权值实际上就是卷积核的权值(已旋转的)。

在这之前,我们需要先将核旋转一下,让卷积函数可以实施互相关计算。另外,我们需要对卷积边界进行处理,但在Matlab里面,就比较容易处理。Matlab中全卷积会对缺少的输入像素补0。

到这里,我们就可以对b和β计算梯度了。首先,加性基b的计算和上面卷积层的一样,对灵敏度map中所有元素加起来就可以了:

而对于乘性偏置β,因为涉及到了在前向传播过程中下采样map的计算,所以我们最好在前向的过程中保存好这些maps,这样在反向的计算中就不用重新计算了。我们定义:

这样,对β的梯度就可以用下面的方式计算:

3.3、Learning Combinations of Feature Maps学习特征map的组合

大部分时候,通过卷积多个输入maps,然后再对这些卷积值求和得到一个输出map,这样的效果往往是比较好的。在一些文献中,一般是人工选择哪些输入maps去组合得到一个输出map。但我们这里尝试去让CNN在训练的过程中学习这些组合,也就是让网络自己学习挑选哪些输入maps来计算得到输出map才是最好的。我们用αij表示在得到第j个输出map的其中第i个输入map的权值或者贡献。这样,第j个输出map可以表示为:

需要满足约束:

这些对变量αij的约束可以通过将变量αij表示为一个组无约束的隐含权值cij的softmax函数来加强。(因为softmax的因变量是自变量的指数函数,他们的变化率会不同)。

因为对于一个固定的j来说,每组权值cij都是和其他组的权值独立的,所以为了方面描述,我们把下标j去掉,只考虑一个map的更新,其他map的更新是一样的过程,只是map的索引j不同而已。

Softmax函数的导数表示为:

这里的δ是Kronecker delta。对于误差对于第l层变量αi的导数为:

最后就可以通过链式规则去求得代价函数关于权值ci的偏导数了:

3.3.1、Enforcing Sparse Combinations加强稀疏性组合

为了限制αi是稀疏的,也就是限制一个输出map只与某些而不是全部的输入maps相连。我们在整体代价函数里增加稀疏约束项Ω(α)。对于单个样本,重写代价函数为:

然后寻找这个规则化约束项对权值ci求导的贡献。规则化项Ω(α)对αi求导是:

然后,通过链式法则,对ci的求导是:

所以,权值ci最后的梯度是:

3.4、Making it Fast with MATLAB

CNN的训练主要是在卷积层和子采样层的交互上,其主要的计算瓶颈是:

1)前向传播过程:下采样每个卷积层的maps;

2)反向传播过程:上采样高层子采样层的灵敏度map,以匹配底层的卷积层输出maps的大小;

3)sigmoid的运用和求导。

对于第一和第二个问题,我们考虑的是如何用Matlab内置的图像处理函数去实现上采样和下采样的操作。对于上采样,imresize函数可以搞定,但需要很大的开销。一个比较快速的版本是使用Kronecker乘积函数kron。通过一个全一矩阵ones来和我们需要上采样的矩阵进行Kronecker乘积,就可以实现上采样的效果。对于前向传播过程中的下采样,imresize并没有提供在缩小图像的过程中还计算nxn块内像素的和的功能,所以没法用。一个比较好和快速的方法是用一个全一的卷积核来卷积图像,然后简单的通过标准的索引方法来采样最后卷积结果。例如,如果下采样的域是2x2的,那么我们可以用2x2的元素全是1的卷积核来卷积图像。然后再卷积后的图像中,我们每个2个点采集一次数据,y=x(1:2:end,1:2:end),这样就可以得到了两倍下采样,同时执行求和的效果。

对于第三个问题,实际上有些人以为Matlab中对sigmoid函数进行inline的定义会更快,其实不然,Matlab与C/C++等等语言不一样,Matlab的inline反而比普通的函数定义更费时间。所以,我们可以直接在代码中使用计算sigmoid函数及其导数的真实代码。

总结

此文主要描述了基本CNN的反向传播过程。包括作为分类器的SoftMax层和FCN层,以及作为特征提取的卷积层和Pooling层的参数更新。

AI:IPPR的模式生成-学习/训练方式(基本结构)的更多相关文章

  1. 装饰者模式的学习(c#) EF SaveChanges() 报错(转载) C# 四舍五入 保留两位小数(转载) DataGridView样式生成器使用说明 MSSQL如何将查询结果拼接成字符串 快递查询 C# 通过smtp直接发送邮件 C# 带参访问接口,WebClient方式 C# 发送手机短信 文件 日志 写入 与读取

    装饰者模式的学习(c#) 案例转自https://www.cnblogs.com/stonefeng/p/5679638.html //主体基类 using System;using System.C ...

  2. 【AI in 美团】深度学习在OCR中的应用

    AI(人工智能)技术已经广泛应用于美团的众多业务,从美团App到大众点评App,从外卖到打车出行,从旅游到婚庆亲子,美团数百名最优秀的算法工程师正致力于将AI技术应用于搜索.推荐.广告.风控.智能调度 ...

  3. 一张图看懂AI、机器学习和深度学习的区别

    AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se ...

  4. ICML论文|阿尔法狗CTO讲座: AI如何用新型强化学习玩转围棋扑克游戏

    今年8月,Demis Hassabis等人工智能技术先驱们将来到雷锋网“人工智能与机器人创新大会”.在此,我们为大家分享David Silver的论文<不完美信息游戏中的深度强化学习自我对战&g ...

  5. 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)

    Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan  2015-12-1 声明 ...

  6. AI安全初探——利用深度学习检测DNS隐蔽通道

    AI安全初探——利用深度学习检测DNS隐蔽通道 目录 AI安全初探——利用深度学习检测DNS隐蔽通道 1.DNS 隐蔽通道简介 2. 算法前的准备工作——数据采集 3. 利用深度学习进行DNS隐蔽通道 ...

  7. AI工程师职业规划和学习路线完整版

    AI工程师职业规划和学习路线完整版   如何成为一名机器学习算法工程师 成为一名合格的开发工程师不是一件简单的事情,需要掌握从开发到调试到优化等一系列能 力,这些能力中的每一项掌握起来都需要足够的努力 ...

  8. 一文读懂对抗生成学习(Generative Adversarial Nets)[GAN]

    一文读懂对抗生成学习(Generative Adversarial Nets)[GAN] 0x00 推荐论文 https://arxiv.org/pdf/1406.2661.pdf 0x01什么是ga ...

  9. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

随机推荐

  1. Spring Boot开发HTTPS协议的REST接口

    Spring Boot开发HTTP的REST接口流程在前文中已经描述过,见<SpringBoot开发REST接口>. 如需要支持HTTPS,只需要在如上基础上进行设置.修改/resourc ...

  2. P1331 海战 洛谷

    题目描述 在峰会期间,武装部队得处于高度戒备.警察将监视每一条大街,军队将保卫建筑物,领空将布满了F-2003飞机.此外,巡洋船只和舰队将被派去保护海岸线.不幸的是因为种种原因,国防海军部仅有很少的几 ...

  3. EC2:将80端口直接转向8080端口

    当安装Tomcat后,需要将服务器的80端口直接指向8080端口,做法如下:1.    确认当前状态.在终端键入:netstat –ntl命令.输入结果应该和下面图片类似.可以看到8080端口处于监听 ...

  4. 史上最全opencv源代码解读,opencv源代码具体解读文件夹

    本博原创,如有转载请注明本博网址http://blog.csdn.net/ding977921830/article/details/46799043. opencv源代码主要是基于adaboost算 ...

  5. jQuery Validate Ajax 验证

    jQuery Validate Ajax 验证 <script type="text/javascript"> $(function() { $('#formCityL ...

  6. HDOJ 4857 逃生

    BestHack.....真乱..... 逃生 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  7. [RxJS] Throttling vs Debouncing

    DebounceTime: It's like delay, but passes only the most recent value from each burst of emissions. T ...

  8. 数据结构(C实现)------- 顺序栈

    栈是限定仅在表的一端进行插入或删除的纯属表,通常称同意插入.删除的一端为栈顶(Top),对应在的.则称还有一端为栈底(Bottom). 不含元素的栈则称为空栈. 所设栈S={a1,a2,a3,..., ...

  9. Kids Store - OpenCart 自适应主题模板 ABC-0022

    KIDS STORE - OPENCART 自适应主题模板 ABC-0022 FEATURES Get FREE Lifetime Updates Get FREE On-Going Support ...

  10. AAC头部格式,RTP打包格式

    一共有2种AAC头格式,一种是StreamMuxConfig,另一种是AudioSpecificConfig 1.AudioSpecificConfig 读写header的代码参考    ffmpeg ...