不多说,直接上干货!

  这篇博客里的算法部分的内容来自《数据算法:Hadoop/Spark大数据处理技巧》一书,不过书中的代码虽然思路正确,但是代码不完整,并且只有java部分的编程,我在它的基础上又加入scala部分,当然是在使用Spark的时候写的scala。

一、输入、期望输出、思路。

输入为SecondarySort.txt,内容为:

,,,
,,,
,,,-
,,,
,,,-
,,,
,,,-
,,,
,,,
,,,
,,,
,,,
,,,-

意义为:年,月,日,温度

期望输出:

- ,,-
- ,,,,-
- ,-
- ,,-

意义为:

年-月 温度1,温度2,温度3,……

年-月从上之下降序排列,

温度从左到右降序排列

思路:

抛弃不需要的代表日的哪一行数据

将年月作为组合键(key),比较大小,降序排列

将对应年月(key)的温度的值(value)进行降序排列和拼接

二、使用Java编写MapReduce程序实现二次排序

代码要实现的类有:

除了常见的SecondarySortingMapper,SecondarySortingReducer,和SecondarySortDriver以外

这里还多出了两个个插件类(DateTemperatureGroupingComparator和DateTemperaturePartioner)和一个自定义类型(DateTemperaturePair)

以下是实现的代码(注意以下每个文件的代码段我去掉了包名,所以要使用的话自己加上吧):

SecondarySortDriver.java

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; public class SecondarySortDriver extends Configured implements Tool {
public int run(String[] args) throws Exception {
Configuration configuration = getConf();
Job job = Job.getInstance(configuration, "SecondarySort");
job.setJarByClass(SecondarySortDriver.class);
job.setJobName("SecondarySort"); Path inputPath = new Path(args[]);
Path outputPath = new Path(args[]);
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath); // 设置map输出key value格式
job.setMapOutputKeyClass(DateTemperaturePair.class);
job.setMapOutputValueClass(IntWritable.class);
// 设置reduce输出key value格式
job.setOutputKeyClass(DateTemperaturePair.class);
job.setOutputValueClass(IntWritable.class); job.setMapperClass(SecondarySortingMapper.class);
job.setReducerClass(SecondarySortingReducer.class);
job.setPartitionerClass(DateTemperaturePartitioner.class);
job.setGroupingComparatorClass(DateTemperatureGroupingComparator.class); boolean status = job.waitForCompletion(true);
return status ? : ;
} public static void main(String[] args) throws Exception {
if (args.length != ) {
throw new IllegalArgumentException(
"!!!!!!!!!!!!!! Usage!!!!!!!!!!!!!!: SecondarySortDriver"
+ "<input-path> <output-path>");
}
int returnStatus = ToolRunner.run(new SecondarySortDriver(), args);
System.exit(returnStatus);
}
}

DateTemperaturePair.java

import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; public class DateTemperaturePair implements Writable,
WritableComparable<DateTemperaturePair> {
private String yearMonth;
private String day;
protected Integer temperature; public int compareTo(DateTemperaturePair o) {
int compareValue = this.yearMonth.compareTo(o.getYearMonth());
if (compareValue == ) {
compareValue = temperature.compareTo(o.getTemperature());
}
return - * compareValue;
} public void write(DataOutput dataOutput) throws IOException {
Text.writeString(dataOutput, yearMonth);
dataOutput.writeInt(temperature); } public void readFields(DataInput dataInput) throws IOException {
this.yearMonth = Text.readString(dataInput);
this.temperature = dataInput.readInt(); } @Override
public String toString() {
return yearMonth.toString();
} public String getYearMonth() {
return yearMonth;
} public void setYearMonth(String text) {
this.yearMonth = text;
} public String getDay() {
return day;
} public void setDay(String day) {
this.day = day;
} public Integer getTemperature() {
return temperature;
} public void setTemperature(Integer temperature) {
this.temperature = temperature;
}
}

SecondarySortingMapper.java

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class SecondarySortingMapper extends
Mapper<LongWritable, Text, DateTemperaturePair, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String[] tokens = value.toString().split(",");
// YYYY = tokens[0]
// MM = tokens[1]
// DD = tokens[2]
// temperature = tokens[3]
String yearMonth = tokens[] + "-" + tokens[];
String day = tokens[];
int temperature = Integer.parseInt(tokens[]); DateTemperaturePair reduceKey = new DateTemperaturePair();
reduceKey.setYearMonth(yearMonth);
reduceKey.setDay(day);
reduceKey.setTemperature(temperature);
context.write(reduceKey, new IntWritable(temperature));
}
}

DateTemperaturePartioner.java

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner; public class DateTemperaturePartitioner extends
Partitioner<DateTemperaturePair, Text> {
@Override
public int getPartition(DateTemperaturePair dataTemperaturePair, Text text,
int i) {
return Math.abs(dataTemperaturePair.getYearMonth().hashCode() % i);
}
}

DateTemperatureGroupingComparator.java

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator; public class DateTemperatureGroupingComparator extends WritableComparator { public DateTemperatureGroupingComparator() {
super(DateTemperaturePair.class, true);
} @Override
public int compare(WritableComparable a, WritableComparable b) {
DateTemperaturePair pair1 = (DateTemperaturePair) a;
DateTemperaturePair pair2 = (DateTemperaturePair) b;
return pair1.getYearMonth().compareTo(pair2.getYearMonth());
}
}

SecondarySortingReducer.java

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer; import java.io.IOException; public class SecondarySortingReducer extends
Reducer<DateTemperaturePair, IntWritable, DateTemperaturePair, Text> { @Override
protected void reduce(DateTemperaturePair key,
Iterable<IntWritable> values, Context context) throws IOException,
InterruptedException {
StringBuilder sortedTemperatureList = new StringBuilder();
for (IntWritable temperature : values) {
sortedTemperatureList.append(temperature);
sortedTemperatureList.append(",");
}
sortedTemperatureList.deleteCharAt(sortedTemperatureList.length()-);
context.write(key, new Text(sortedTemperatureList.toString()));
} }

三、使用scala编写Spark程序实现二次排序

这个代码想必就比较简洁了。如下:

SecondarySort.scala

package spark
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.rdd.RDD.rddToOrderedRDDFunctions
import org.apache.spark.rdd.RDD.rddToPairRDDFunctions object SecondarySort {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName(" Secondary Sort ")
.setMaster("local")
var sc = new SparkContext(conf)
sc.setLogLevel("Warn")
//val file = sc.textFile("hdfs://localhost:9000/Spark/SecondarySort/Input/SecondarySort2.txt")
val file = sc.textFile("e:\\SecondarySort.txt")
val rdd = file.map(line => line.split(","))
.map(x=>((x(),x()),x())).groupByKey().sortByKey(false)
.map(x => (x._1._1+"-"+x._1._2,x._2.toList.sortWith(_>_)))
rdd.foreach(
x=>{
val buf = new StringBuilder()
for(a <- x._2){
buf.append(a)
buf.append(",")
}
buf.deleteCharAt(buf.length()-)
println(x._1+" "+buf.toString())
})
sc.stop()
}
}

二次排序问题(分别使用Hadoop和Spark实现)的更多相关文章

  1. 数据算法 --hadoop/spark数据处理技巧 --(1.二次排序问题 2. TopN问题)

    一.二次排序问题. MR/hadoop两种方案: 1.让reducer读取和缓存给个定键的所有值(例如,缓存到一个数组数据结构中,)然后对这些值完成一个reducer中排序.这种方法不具有可伸缩性,因 ...

  2. Ubuntu14.04或16.04下Hadoop及Spark的开发配置

    对于Hadoop和Spark的开发,最常用的还是Eclipse以及Intellij IDEA. 其中,Eclipse是免费开源的,基于Eclipse集成更多框架配置的还有MyEclipse.Intel ...

  3. 成都大数据Hadoop与Spark技术培训班

    成都大数据Hadoop与Spark技术培训班   中国信息化培训中心特推出了大数据技术架构及应用实战课程培训班,通过专业的大数据Hadoop与Spark技术架构体系与业界真实案例来全面提升大数据工程师 ...

  4. hadoop+hive+spark搭建(一)

    1.准备三台虚拟机 2.hadoop+hive+spark+java软件包 传送门:Hadoop官网 Hive官网 Spark官网      一.修改主机名,hosts文件 主机名修改 hostnam ...

  5. 剖析Hadoop和Spark的Shuffle过程差异

    一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么 ...

  6. 学Hadoop还是Spark好?

    JS 相信看这篇文章的你们,都和我一样对Hadoop和Apache Spark的选择有一定的疑惑,今天查了不少资料,我们就来谈谈这两种 平台的比较与选择吧,看看对于工作和发展,到底哪个更好. 一.Ha ...

  7. 剖析Hadoop和Spark的Shuffle过程差异(一)

    一.前言 对于基于MapReduce编程范式的分布式计算来说,本质上而言,就是在计算数据的交.并.差.聚合.排序等过程.而分布式计算分而治之的思想,让每个节点只计算部分数据,也就是只处理一个分片,那么 ...

  8. H01-Linux系统中搭建Hadoop和Spark集群

    前言 1.操作系统:Centos7 2.安装时使用的是root用户.也可以用其他非root用户,非root的话要注意操作时的权限问题. 3.安装的Hadoop版本是2.6.5,Spark版本是2.2. ...

  9. 深度:Hadoop对Spark五大维度正面比拼!

    每年,市场上都会出现种种不同的数据管理规模.类型与速度表现的分布式系统.在这些系统中,Spark和hadoop是获得最大关注的两个.然而该怎么判断哪一款适合你? 如果想批处理流量数据,并将其导入HDF ...

  10. 常见的七种Hadoop和Spark项目案例

    常见的七种Hadoop和Spark项目案例 有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Sp ...

随机推荐

  1. CNN结构:SPP-Net为CNNs添加空间尺度卷积-神经元层

    前几个CNN检测的框架要求网络的图像输入为固定长宽,而SPP-Net在CNN结构中添加了一个实现图像金字塔功能的卷积层SPP层,用于在网络中实现多尺度卷积,由此对应多尺度输入,以此应对图像的缩放变换和 ...

  2. Android 性能测试初探(五)

    书接上文 Android 性能测试初探之 GPU(四) 前文说了的一些性能测试项大家可能都听说,接下来我们聊聊大家不常关注的测试项- 功耗 . 功耗测试主要从以下几个方面入手进行测试 测试手机安装目标 ...

  3. 【JavaScript游戏开发】JavaScript+HTML5封装的苏拉卡尔塔游戏(包含源码)

    /** 苏拉克尔塔游戏 * 思路: * 1.棋盘设置:使用HTML5的canvas标签绘制整个棋盘 * 2.点击事件:当页面被点击时,获取点击的x,y像素点,根据此像素点进行判断,再在合适位置绘制黑红 ...

  4. Linux 中, 安装html转pdf工具:wkhtmltopdf

    wkhtmltopdf下载地址官网:https://wkhtmltopdf.org/downloads.html 进入到/opt文件夹下面,新建文件夹wkhtmltopdf,然后把下载好的wkhtml ...

  5. 配置Master与Slave实现主从同步

    Mysql版本 通过docker启动的mysql容器 mysql版本 root@1651d1cab219:/# mysql --version mysql Ver 14.14 Distrib 5.6. ...

  6. Q&A to prepare interview of HSBC

    1.How do you keep updating lastest IT knowledge? 1).keep an eye on current project technology evetho ...

  7. Flask中的session操作

    一.配置SECRET_KEY 因为flask的session是通过加密之后放到了cookie中.所以有加密就有密钥用于解密,所以,只要用到了flask的session模块就一定要配置“SECRET_K ...

  8. android的数据与访问(2)-delphi xe7如何存取我的app配置参数文件?

    这种方法不推荐,因为该SharedPreference是android的方法.你想跨平台,在ios上就不能使用.建议还是用ini or xml.android因为读写该二种文件比较繁琐,所以推出自己简 ...

  9. 念念不忘SERVLET

    这个弄弄也有意思,以前无法入门,没有系统性概念,现在慢慢开始懂了.. 这个SERVLET/JSP学习笔记也易懂.. 那个JAVA7程序设计也可以慢慢看来,, 再加上SPRING,我黑心了??:) pa ...

  10. [bzoj2588][Spoj10628]Count on a tree_主席树

    Count on a tree bzoj-2588 Spoj-10628 题目大意:给定一棵n个点的树,m次查询.查询路径上k小值. 注释:$1\le n,m\le 10^5$. 想法:好像更博顺序有 ...