2791: [Poi2012]Rendezvous

Time Limit: 25 Sec  Memory Limit: 128 MB
Submit: 95  Solved: 71
[Submit][Status][Discuss]

Description

给定一个n个顶点的有向图,每个顶点有且仅有一条出边。
对于顶点i,记它的出边为(i, a[i])。
再给出q组询问,每组询问由两个顶点a、b组成,要求输出满足下面条件的x、y:
1. 从顶点a沿着出边走x步和从顶点b沿着出边走y步后到达的顶点相同。
2. 在满足条件1的情况下max(x,y)最小。
3. 在满足条件1和2的情况下min(x,y)最小。
4. 在满足条件1、2和3的情况下x>=y。
如果不存在满足条件1的x、y,输出-1 -1。

Input

第一行两个正整数n和q (n,q<=500,000)。
第二行n个正整数a[1],a[2],...,a[n] (a[i]<=n)。
下面q行,每行两个正整数a,b (a,b<=n),表示一组询问。

Output

输出q行,每行两个整数。

Sample Input

12 5
4 3 5 5 1 1 12 12 9 9 7 1
7 2
8 11
1 2
9 10
10 5

Sample Output

2 3
1 2
2 2
0 1
-1 -1

HINT

 

Source

[Submit][Status][Discuss]

n个点,n条边且每个点都有出边,显然是环套树森林。

先dfs把环套树拆成一堆树,倍增LCA。

先将x,y两个点倍增到环上,然后判断即可。

 #include<cstdio>
#include<algorithm>
#define N 500050
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,fa[N][],root,q,circle[N],deep[N];
int num[N],sum[N],tot,pos[N],vis[N];
void findcircle(int x)
{
int now=x;
for(;;x=fa[x][])
{
if(vis[x]==now)break;
if(vis[x])return;
vis[x]=now;
}
tot++;
while(!circle[x])
{
circle[x]=x;
deep[x]=;
num[x]=++sum[tot];
pos[x]=tot;
x=fa[x][];
}
}
void dfs(int x)
{
if(deep[x])return;
dfs(fa[x][]);
circle[x]=circle[fa[x][]];
deep[x]=deep[fa[x][]]+;
for(int i=;(<<i)<deep[x];i++)
fa[x][i]=fa[fa[x][i-]][i-];
}
inline int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=;~i;i--)
if(t&(<<i))x=fa[x][i];
if(x==y)return x;
for(int i=;~i;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][];
}
bool judge(int a,int b,int c,int d)
{
if(max(a,b)<max(c,d))return ;
if(max(a,b)>max(c,d))return ;
if(min(a,b)<min(c,d))return ;
if(min(a,b)>min(c,d))return ;
if(a>=b)return ;
return ;
}
int main()
{
n=read();q=read();
for(int i=;i<=n;i++)
fa[i][]=read();
for(int i=;i<=n;i++)
findcircle(i);
for(int i=;i<=n;i++)
if(!circle[i])dfs(i);
while(q--)
{
int x=read(),y=read();
if(pos[circle[x]]!=pos[circle[y]])
{
puts("-1 -1");
continue;
}
if(circle[x]==circle[y])
{
int t=lca(x,y);
printf("%d %d\n",deep[x]-deep[t],deep[y]-deep[t]);
continue;
}
int ans1=deep[x]-,ans2=deep[y]-,t=pos[circle[x]];
x=num[circle[x]];y=num[circle[y]];
int z1=(sum[t]+y-x)%sum[t],z2=sum[t]-z1;
if(judge(ans1+z1,ans2,ans1,ans2+z2))
printf("%d %d\n",ans1+z1,ans2);
else printf("%d %d\n",ans1,ans2+z2);
}
}

[BZOJ2791][Poi2012]Rendezvous的更多相关文章

  1. [BZOJ2791]:[Poi2012]Rendezvous(塔尖+倍增LCA)

    题目传送门 题目描述 给定一个有n个顶点的有向图,每个顶点有且仅有一条出边.每次询问给出两个顶点${a}_{i}$和${b}_{i}$​​,求满足以下条件的${x}_{i}$和${y}_{i}$:   ...

  2. 【BZOJ2791】[Poi2012]Rendezvous 倍增

    [BZOJ2791][Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组 ...

  3. 【BZOJ 2791】 2791: [Poi2012]Rendezvous (环套树、树链剖分LCA)

    2791: [Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组询问由两 ...

  4. bzoj 2791 [Poi2012]Rendezvous 基环森林

    题目大意 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...

  5. [Poi2012]Rendezvous

    题目描述 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...

  6. POI2012题解

    POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...

  7. LG3533 [POI2012]RAN-Rendezvous

    2791: [Poi2012]Rendezvous Time Limit: 25 Sec  Memory Limit: 128 MBSubmit: 259  Solved: 160[Submit][S ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 「POI2012」约会 Rendezvous

    #2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...

随机推荐

  1. 学习SQLAlchemy Core

    有时间了就要慢慢看,死守DJANGO ORM,明显没有SQLAlchemy有优势. 因为SQLAlchemy针对整个PYTHON都是有用的. 找了本书,慢慢撸. <Essential.SQLAl ...

  2. 攻城狮在路上(叁)Linux(十五)--- 文件与目录的默认权限与隐藏权限

    一.文件默认权限:umask <==需要被减去的权限. 1.umask指的是当前用户在新建文件或者目录时的默认权限,如0022; 2.默认情况下,用户创建文件的最大权限为666; 创建目录的最大 ...

  3. 攻城狮在路上(壹) Hibernate(九)--- Hibernate的映射类型

    Hibernate采用映射类型作为Java类型和SQL类型的桥梁,对应type属性.分为两种:内置映射类型和客户化映射类型.一.内置映射类型: 1.Java基本类型的Hibernate映射类型: Ja ...

  4. NBU bplabel命令擦除磁帶數據

    bplabel Linux系統,該命令位於NBU server的如下目錄:/usr/openv/netbackup/bin/admincmd bplabel – write NetBackup lab ...

  5. Oracle12c client安裝報錯[INS-20802] Oracle Net Configuration Assistant failed完美解決

    Doc ID 2082662.1 1.錯誤碼 Installation Of Oracle Client 12.1.0.2.0 (32-bit) Fails With An Error Message ...

  6. Linux發送郵件

    1.直接使用shell當編輯器 [root@phburdb1 mail]# mail -s "Hello World" juncai.chen@innolux.comHello j ...

  7. android 入门-基础了解

    strings.xml – 文字資源. colors.xml – 顏色資源. dimens.xml – 尺寸資源. arrays.xml – 陣列資源. styles.xml – 樣式資源. #RGB ...

  8. 关于RTP负载类型及时间戳介绍

    转自:http://www.360doc.com/content/11/1018/13/1016783_157133781.shtml 首 先,看RTP协议包头的格式: 前12个字节在每一个RTP p ...

  9. JSON数据解析(转)

    JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,采用完全独立于语言的文本格式,为Web应用开发提供了一种理想的数据交换格式. 本文将主要介绍在Android ...

  10. java线程之——sleep()与wait()的区别

    sleep()是Thread的方法,wait()是Object的方法 如果线程进入了同步锁,sleep不会释放对象锁,wait会释放对象锁 sleep的作用就是让正在执行的线程主动让出CPU,给其它线 ...