[BZOJ2791][Poi2012]Rendezvous
2791: [Poi2012]Rendezvous
Time Limit: 25 Sec Memory Limit: 128 MB
Submit: 95 Solved: 71
[Submit][Status][Discuss]
Description
给定一个n个顶点的有向图,每个顶点有且仅有一条出边。
对于顶点i,记它的出边为(i, a[i])。
再给出q组询问,每组询问由两个顶点a、b组成,要求输出满足下面条件的x、y:
1. 从顶点a沿着出边走x步和从顶点b沿着出边走y步后到达的顶点相同。
2. 在满足条件1的情况下max(x,y)最小。
3. 在满足条件1和2的情况下min(x,y)最小。
4. 在满足条件1、2和3的情况下x>=y。
如果不存在满足条件1的x、y,输出-1 -1。
Input
第一行两个正整数n和q (n,q<=500,000)。
第二行n个正整数a[1],a[2],...,a[n] (a[i]<=n)。
下面q行,每行两个正整数a,b (a,b<=n),表示一组询问。
Output
输出q行,每行两个整数。
Sample Input
4 3 5 5 1 1 12 12 9 9 7 1
7 2
8 11
1 2
9 10
10 5
Sample Output
1 2
2 2
0 1
-1 -1
HINT
Source
n个点,n条边且每个点都有出边,显然是环套树森林。
先dfs把环套树拆成一堆树,倍增LCA。
先将x,y两个点倍增到环上,然后判断即可。
#include<cstdio>
#include<algorithm>
#define N 500050
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,fa[N][],root,q,circle[N],deep[N];
int num[N],sum[N],tot,pos[N],vis[N];
void findcircle(int x)
{
int now=x;
for(;;x=fa[x][])
{
if(vis[x]==now)break;
if(vis[x])return;
vis[x]=now;
}
tot++;
while(!circle[x])
{
circle[x]=x;
deep[x]=;
num[x]=++sum[tot];
pos[x]=tot;
x=fa[x][];
}
}
void dfs(int x)
{
if(deep[x])return;
dfs(fa[x][]);
circle[x]=circle[fa[x][]];
deep[x]=deep[fa[x][]]+;
for(int i=;(<<i)<deep[x];i++)
fa[x][i]=fa[fa[x][i-]][i-];
}
inline int lca(int x,int y)
{
if(deep[x]<deep[y])swap(x,y);
int t=deep[x]-deep[y];
for(int i=;~i;i--)
if(t&(<<i))x=fa[x][i];
if(x==y)return x;
for(int i=;~i;i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][];
}
bool judge(int a,int b,int c,int d)
{
if(max(a,b)<max(c,d))return ;
if(max(a,b)>max(c,d))return ;
if(min(a,b)<min(c,d))return ;
if(min(a,b)>min(c,d))return ;
if(a>=b)return ;
return ;
}
int main()
{
n=read();q=read();
for(int i=;i<=n;i++)
fa[i][]=read();
for(int i=;i<=n;i++)
findcircle(i);
for(int i=;i<=n;i++)
if(!circle[i])dfs(i);
while(q--)
{
int x=read(),y=read();
if(pos[circle[x]]!=pos[circle[y]])
{
puts("-1 -1");
continue;
}
if(circle[x]==circle[y])
{
int t=lca(x,y);
printf("%d %d\n",deep[x]-deep[t],deep[y]-deep[t]);
continue;
}
int ans1=deep[x]-,ans2=deep[y]-,t=pos[circle[x]];
x=num[circle[x]];y=num[circle[y]];
int z1=(sum[t]+y-x)%sum[t],z2=sum[t]-z1;
if(judge(ans1+z1,ans2,ans1,ans2+z2))
printf("%d %d\n",ans1+z1,ans2);
else printf("%d %d\n",ans1,ans2+z2);
}
}
[BZOJ2791][Poi2012]Rendezvous的更多相关文章
- [BZOJ2791]:[Poi2012]Rendezvous(塔尖+倍增LCA)
题目传送门 题目描述 给定一个有n个顶点的有向图,每个顶点有且仅有一条出边.每次询问给出两个顶点${a}_{i}$和${b}_{i}$,求满足以下条件的${x}_{i}$和${y}_{i}$: ...
- 【BZOJ2791】[Poi2012]Rendezvous 倍增
[BZOJ2791][Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组 ...
- 【BZOJ 2791】 2791: [Poi2012]Rendezvous (环套树、树链剖分LCA)
2791: [Poi2012]Rendezvous Description 给定一个n个顶点的有向图,每个顶点有且仅有一条出边.对于顶点i,记它的出边为(i, a[i]).再给出q组询问,每组询问由两 ...
- bzoj 2791 [Poi2012]Rendezvous 基环森林
题目大意 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...
- [Poi2012]Rendezvous
题目描述 给定一个n个顶点的有向图,每个顶点有且仅有一条出边. 对于顶点i,记它的出边为(i, a[i]). 再给出q组询问,每组询问由两个顶点a.b组成,要求输出满足下面条件的x.y: 从顶点a沿着 ...
- POI2012题解
POI2012题解 这次的完整的\(17\)道题哟. [BZOJ2788][Poi2012]Festival 很显然可以差分约束建图.这里问的是变量最多有多少种不同的取值. 我们知道,在同一个强连通分 ...
- LG3533 [POI2012]RAN-Rendezvous
2791: [Poi2012]Rendezvous Time Limit: 25 Sec Memory Limit: 128 MBSubmit: 259 Solved: 160[Submit][S ...
- bzoj AC倒序
Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...
- 「POI2012」约会 Rendezvous
#2691. 「POI2012」约会 Rendezvous 这题我简直不想说什么了,什么素质,卡常数…… “每个顶点有且仅有一条出边”,所以是一道基环树的题,首先tarjan缩点,在缩完点后的图上求a ...
随机推荐
- MVC:Control与View传值
MVC页面传值的方式主要有三种: 第一种: 采用ViewData.采用键值对的方式,ViewData存储的是一个object类型,传到view层需要强类型转换:使用起来类似于字典集合模式: ViewD ...
- 【JAVA集合框架之工具类】
一.概述 JAVA集合框架中有两个很重要的工具类,一个是Collections,另一个是Arrays.分别封装了对集合的操作方法和对数组的操作方法,这些操作方法使得程序员的开发更加高效. public ...
- Oracle备份及备份策略
第二章. 了解备份的重要性 可以说,从计算机系统出世的那天起,就有了备份这个概念,计算机以其强大的速度处理能力,取代了很多人为的工作,但是,往往很多时候,它又是那么弱不禁风,主板上的芯片.主板电路.内 ...
- hdu 4272 2012长春赛区网络赛 dfs暴力 ***
总是T,以为要剪枝,后来发现加个map就行了 #include<cstdio> #include<iostream> #include<algorithm> #in ...
- Eclipse调试方法及快捷键
基本操作 断点,breakpoint: F5键与F6键均为单步调试: F5是step into,也就是进入本行代码中执行,跳入 F6是step over,跳过,也就是执行本行代码,跳到下一行 F7是跳 ...
- 通过PID获取进程路径的几种方法
通过PID获取进程路径的几种方法 想获得进程可执行文件的路径最常用的方法是通过GetModuleFileNameEx函数获得可执行文件的模块路径这个函数从Windows NT 4.0开始到现在的Vis ...
- SQLServer两张表筛选相同数据和不同数据
概述 项目中经常会对两张数据库表的数据进行比较,选出相同的数据或者不同的数据.在SQL SERVER 2000中只能用Exists来判断,到了SQL SERVER 2005以后可以采用EXCEPT和I ...
- Spring官网改版后下载
Spring官网改版后找了好久都没有找到直接下载Jar包的链接,下面汇总些网上提供的方法,亲测可用. 1.直接输入地址,改相应版本即可:http://repo.springsource.org/lib ...
- 简单记录在Visual Studio 2013中创建ASP.NET Web API 2
在很多跨平台的应用中就需要Web API ,比如android与数据库的交互. Create a Web API Project 选择新建项目下的模板下的Visual C#节点下的Web节点,在模板列 ...
- 关于Vector中的元素中含有指针成员的情况
对于容器,当容器的各个元素为类类型,且该类类型中含有指针成员时: 如果类类型的析构函数中包含了对指针变量指向内存的释放操作,则在利用clear()函数删除容器所有元素时,会自动调用类的析构函数,自动实 ...