woodbury matrix identity

2014/6/20

【转载请注明出处】http://www.cnblogs.com/mashiqi

http://en.wikipedia.org/wiki/Woodbury_matrix_identity

Today I'm going to write down a proof of this Woodbury matrix identity, which is very important in some practical situation. For instance, the 40th equation of this paper" bayesian compressive sensing using Laplace priors" applied this identity. Now let me give the details of it.

The Woodbury matrix identity is:

${(A + UCV)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}$

where , , and are both assumed reversible.

Proof:

We denote with , namely .So:

\[M{A^{ - 1}} = I + UCV{A^{ - 1}}\]

By multiply U with both side we get:

\[\begin{array}{l}
M{A^{ - 1}}U = U + UCV{A^{ - 1}}U = U(I + CV{A^{ - 1}}U)\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = UC({C^{ - 1}} + V{A^{ - 1}}U)
\end{array}\]

is reversible, we get:

But how could we deal with this nasty term? We should notice that this term, which may not square, is coming from itself, which is right a square and reversible matrix. So, from formula , we make up a pleasant with is nasty :

\[\begin{array}{l}
M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A = UCV + A = M\\
\Rightarrow M = M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A\\
\Rightarrow I - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V = {M^{ - 1}}A
\end{array}\]

And finally due to the reversibility of , we get the Woodbury matrix identity:

\[{M^{ - 1}} = {(A + VCU)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}\]

Done.

We should notice that if and are identity matrix, then Woodbury matrix identity can be reduced to this form:

\[{(A + C)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

,which is equivalent to:

\[{(A + C)^{ - 1}} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

This is because:

\[\begin{array}{l}
{(A + C)^{ - 1}} = {A^{ - 1}} - ( - {C^{ - 1}} + {C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - ({C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - {A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}
\end{array}\]

Woodbury matrix identity的更多相关文章

  1. 伍德伯里矩阵恒等式(Woodbury matrix identity)

    宜言饮酒,与子偕老.琴瑟在御,莫不静好. 更多精彩内容请关注微信公众号 "优化与算法" 在数学(特别是线性代数)中,Woodbury矩阵恒等式是以Max A.Woodbury命名的 ...

  2. 最大比率传输(Maximum Ratio Transmission, MRT)原理分析

    转载请注明出处. 最大比率发射(Maximum Ratio Transmission, MRT)是文献中经常看见的一个词,今天就在这里做一下笔记. 参考文献为:T. K. Y. Lo, "M ...

  3. 新基建新机遇!100页PPT

    "新基建"是与传统的"铁公基"相对应,结合新一轮科技革命和产业变革特征,面向国家战略需求,为经济社会的创新.协调.绿色.开放.共享发展提供底层支撑的具有乘数效应 ...

  4. MIMO OFDM 常用信号检测算法

    MIMO OFDM 系统检测算法 1. 前言 MIMO的空分复用技术可以使得系统在系统带宽和发射带宽不变的情况下容易地获得空间分集增益和信道的容量增益.OFDM技术采用多个正交的子载波并行传输数据,使 ...

  5. OSG中的HUD

    OSG中的HUD 所谓HUD节点,说白了就是无论三维场景中的内容怎么改变,它都能在屏幕上固定位置显示的节点. 实现要点: 关闭光照,不受场景光照影响,所有内容以同一亮度显示 关闭深度测试 调整渲染顺序 ...

  6. osg实例介绍

    osg实例介绍 转自:http://blog.csdn.net/yungis/article/list/1 [原]osgmotionblur例子 该例子演示了运动模糊的效果.一下内容是转自网上的:原理 ...

  7. OSG动画学习

    OSG动画学习 转自:http://bbs.osgchina.org/forum.php?mod=viewthread&tid=3899&_dsign=2587a6a9 学习动画,看了 ...

  8. 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别

    [源码下载] 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别 作者:webabcd 介绍重新想象 Windows 8 Store Apps ...

  9. osg 中鼠标拾取线段的端点和中点

    //NeartestPointNodeVisitor.h #pragma once #include <osg\Matrix> #include <vector> #inclu ...

随机推荐

  1. 流镜像(华为S9306和S5700)

    流镜像是指将设备.端口或者VLAN内收.发的指定类型报文复制到观察端口上,监控设备只对指定类型报文进行监测. 流镜像有基于ACL和基于MQC(即复杂流分类)两种配置方式.前者配置简便,但是没有后者支持 ...

  2. oracle数据库的TNS配置

    TNS简要介绍与应用 Oracle中TNS的完整定义:transparence Network Substrate透明网络底层,监听服务是它重要的一部分,不是全部,不要把TNS当作只是监听器. TNS ...

  3. GPIO相关知识

    参考资料: 1. 维基百科GPIO 2. GPIO博客资料(一) 3. MMIO和PMIO 知识点: ● GPIO是General-purpose input/output的缩写,是一个在集成电路上的 ...

  4. SQL语言增加、修改、删除数据的语法

    增加 insert into 表名(字段1,字段2) values ('字段1的值','字段2的值'); 修改 update 表名 set 字段1='赋予字段1的新值',字段2='赋予字段2的新值' ...

  5. NGUI UIToggle

    NGUI UIToggle 1.add a UI Toggle(Script) and UI Toggle Objects(Script) to a Tab Button(Which has a UI ...

  6. public && protected && private

    http://www.cnblogs.com/BeyondAnyTime/archive/2012/05/23/2514964.html 1.public继承不改变基类成员的访问权限. 2.priva ...

  7. 基于天天动听API开发在线音乐查询网站

    预览图 源码下载 地址:https://github.com/bajdcc/dev/tree/master/ttpod 文件夹说明: App_Code,WCF服务 Script,离线下载的celery ...

  8. shell变量赋值 不能有空格的原因

    典型例子: a=date echo $a      成立 a =date echo $a     不成立 其实原因很简单 shell在解释命令时的原则是第一个符号标记只能是程序或者命令,有空格的时候第 ...

  9. win8平台下Ruby on Rails的第一个web应用

    最近在做一个网站web前端的前期开发,老板要求用Ruby on Rails搭建部署开发环境,上网搜之,发现整个搭建流程比较坑爹,于是用了一款集成软件Bitnami Ruby Stack一键安装到我的w ...

  10. 二模 (15)day2

    第一题:Alice和Bob两个人正在玩一个游戏,游戏有很多种任务,难度为p的任务(p是正整数),有1/2p 的概率完成并得到2p−1分,如果完成不了,得0分.一开始每人都是0分,从Alice开始轮流做 ...