woodbury matrix identity

2014/6/20

【转载请注明出处】http://www.cnblogs.com/mashiqi

http://en.wikipedia.org/wiki/Woodbury_matrix_identity

Today I'm going to write down a proof of this Woodbury matrix identity, which is very important in some practical situation. For instance, the 40th equation of this paper" bayesian compressive sensing using Laplace priors" applied this identity. Now let me give the details of it.

The Woodbury matrix identity is:

${(A + UCV)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}$

where , , and are both assumed reversible.

Proof:

We denote with , namely .So:

\[M{A^{ - 1}} = I + UCV{A^{ - 1}}\]

By multiply U with both side we get:

\[\begin{array}{l}
M{A^{ - 1}}U = U + UCV{A^{ - 1}}U = U(I + CV{A^{ - 1}}U)\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = UC({C^{ - 1}} + V{A^{ - 1}}U)
\end{array}\]

is reversible, we get:

But how could we deal with this nasty term? We should notice that this term, which may not square, is coming from itself, which is right a square and reversible matrix. So, from formula , we make up a pleasant with is nasty :

\[\begin{array}{l}
M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A = UCV + A = M\\
\Rightarrow M = M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A\\
\Rightarrow I - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V = {M^{ - 1}}A
\end{array}\]

And finally due to the reversibility of , we get the Woodbury matrix identity:

\[{M^{ - 1}} = {(A + VCU)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}\]

Done.

We should notice that if and are identity matrix, then Woodbury matrix identity can be reduced to this form:

\[{(A + C)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

,which is equivalent to:

\[{(A + C)^{ - 1}} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]

This is because:

\[\begin{array}{l}
{(A + C)^{ - 1}} = {A^{ - 1}} - ( - {C^{ - 1}} + {C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - ({C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - {A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}
\end{array}\]

Woodbury matrix identity的更多相关文章

  1. 伍德伯里矩阵恒等式(Woodbury matrix identity)

    宜言饮酒,与子偕老.琴瑟在御,莫不静好. 更多精彩内容请关注微信公众号 "优化与算法" 在数学(特别是线性代数)中,Woodbury矩阵恒等式是以Max A.Woodbury命名的 ...

  2. 最大比率传输(Maximum Ratio Transmission, MRT)原理分析

    转载请注明出处. 最大比率发射(Maximum Ratio Transmission, MRT)是文献中经常看见的一个词,今天就在这里做一下笔记. 参考文献为:T. K. Y. Lo, "M ...

  3. 新基建新机遇!100页PPT

    "新基建"是与传统的"铁公基"相对应,结合新一轮科技革命和产业变革特征,面向国家战略需求,为经济社会的创新.协调.绿色.开放.共享发展提供底层支撑的具有乘数效应 ...

  4. MIMO OFDM 常用信号检测算法

    MIMO OFDM 系统检测算法 1. 前言 MIMO的空分复用技术可以使得系统在系统带宽和发射带宽不变的情况下容易地获得空间分集增益和信道的容量增益.OFDM技术采用多个正交的子载波并行传输数据,使 ...

  5. OSG中的HUD

    OSG中的HUD 所谓HUD节点,说白了就是无论三维场景中的内容怎么改变,它都能在屏幕上固定位置显示的节点. 实现要点: 关闭光照,不受场景光照影响,所有内容以同一亮度显示 关闭深度测试 调整渲染顺序 ...

  6. osg实例介绍

    osg实例介绍 转自:http://blog.csdn.net/yungis/article/list/1 [原]osgmotionblur例子 该例子演示了运动模糊的效果.一下内容是转自网上的:原理 ...

  7. OSG动画学习

    OSG动画学习 转自:http://bbs.osgchina.org/forum.php?mod=viewthread&tid=3899&_dsign=2587a6a9 学习动画,看了 ...

  8. 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别

    [源码下载] 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别 作者:webabcd 介绍重新想象 Windows 8 Store Apps ...

  9. osg 中鼠标拾取线段的端点和中点

    //NeartestPointNodeVisitor.h #pragma once #include <osg\Matrix> #include <vector> #inclu ...

随机推荐

  1. android 事件监听

    步骤: 1.获取代表控件对象. 2.定义一个类,实现监听接口. 3.生成监听器对象. 4.为控件绑定监听器对象. XML <LinearLayout xmlns:android="ht ...

  2. 1. Swift基本变量|运算符|控制流

    Swift基于cocoa Touch框架,苹果官方为了保证Swift的可靠性,结合多种语言的特性,同时独立了一套属于自己的单独语言,结合了C,C++,OC,Java等语言. 基本变量: 1 . swi ...

  3. 合并基因表达水平(merge gene expression levels, FPKM)

    使用tophat和cufflinks计算RNA-seq数据的表达水平时,当一个基因在一个样本中有多个表达水平时需要合并它们的表达水平. This code is a solution to colla ...

  4. [poj3321]Apple Tree(dfs序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26762   Accepted: 7947 Descr ...

  5. hibernate延迟加载(get和load的区别)

    概要: 在hibernate中我们知道如果要从数据库中得到一个对象,通常有两种方式,一种是通过session.get()方法,另一种就是通过session.load()方法,然后其实这两种方法在获得一 ...

  6. Knockout学习笔记之二($root,$parent及$data的区别)

    以下是我从Google上找到的一个例子,非常生动形象,我修改了部分代码,具体内容如下: 对于$root 与$parent的区别: $root refers to the view model appl ...

  7. git diff patch

    如何生成patch:修改一个地方,然后git diff > xxx.patch 就会生成一个patch文件,这里的关键似乎是, 源文件的某个模块的版本要和线上发布的最新版本要一致,这样patch ...

  8. 使用spark与ElasticSearch交互

    使用 elasticsearch-hadoop 包,可在 github 中搜索到该项目 项目地址 example import org.elasticsearch.spark._ import org ...

  9. [转]去除inline-block元素间间距的N种方法

    来自张鑫旭-鑫空间-鑫生活[http://www.zhangxinxu.com] 一.现象描述 真正意义上的inline-block水平呈现的元素间,换行显示或空格分隔的情况下会有间距,很简单的个例子 ...

  10. HTML 图像<img>

    定义和用法: img元素向网页中嵌入一副图像. 请注意:从技术上讲,<img>标签并不会在网页中插入图像,而是从网页上链接图像.<img>标签创建的是被引用图像的占位空间. 属 ...