Woodbury matrix identity
woodbury matrix identity
2014/6/20
【转载请注明出处】http://www.cnblogs.com/mashiqi
http://en.wikipedia.org/wiki/Woodbury_matrix_identity
Today I'm going to write down a proof of this Woodbury matrix identity, which is very important in some practical situation. For instance, the 40th equation of this paper" bayesian compressive sensing using Laplace priors" applied this identity. Now let me give the details of it.
The Woodbury matrix identity is:
${(A + UCV)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}$
where ,
,
and
are both assumed reversible.
Proof:
We denote with
, namely
.So:
\[M{A^{ - 1}} = I + UCV{A^{ - 1}}\]
By multiply U with both side we get:
\[\begin{array}{l}
M{A^{ - 1}}U = U + UCV{A^{ - 1}}U = U(I + CV{A^{ - 1}}U)\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = UC({C^{ - 1}} + V{A^{ - 1}}U)
\end{array}\]
is reversible,
we get:
But how could we deal with this nasty term? We should notice that this term, which may not square, is coming from
itself, which is right a square and reversible matrix. So, from formula , we make up a pleasant
with is nasty
:
\[\begin{array}{l}
M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A = UCV + A = M\\
\Rightarrow M = M{A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V + A\\
\Rightarrow I - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V = {M^{ - 1}}A
\end{array}\]
And finally due to the reversibility of , we get the Woodbury matrix identity:
\[{M^{ - 1}} = {(A + VCU)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}U{({C^{ - 1}} + V{A^{ - 1}}U)^{ - 1}}V{A^{ - 1}}\]
Done.
We should notice that if and
are identity matrix, then Woodbury matrix identity can be reduced to this form:
\[{(A + C)^{ - 1}} = {A^{ - 1}} - {A^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]
,which is equivalent to:
\[{(A + C)^{ - 1}} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\]
This is because:
\[\begin{array}{l}
{(A + C)^{ - 1}} = {A^{ - 1}} - ( - {C^{ - 1}} + {C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - ({C^{ - 1}} + {A^{ - 1}}){({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {A^{ - 1}} + {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}} - {A^{ - 1}}\\
{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} = {C^{ - 1}}{({C^{ - 1}} + {A^{ - 1}})^{ - 1}}{A^{ - 1}}
\end{array}\]
Woodbury matrix identity的更多相关文章
- 伍德伯里矩阵恒等式(Woodbury matrix identity)
宜言饮酒,与子偕老.琴瑟在御,莫不静好. 更多精彩内容请关注微信公众号 "优化与算法" 在数学(特别是线性代数)中,Woodbury矩阵恒等式是以Max A.Woodbury命名的 ...
- 最大比率传输(Maximum Ratio Transmission, MRT)原理分析
转载请注明出处. 最大比率发射(Maximum Ratio Transmission, MRT)是文献中经常看见的一个词,今天就在这里做一下笔记. 参考文献为:T. K. Y. Lo, "M ...
- 新基建新机遇!100页PPT
"新基建"是与传统的"铁公基"相对应,结合新一轮科技革命和产业变革特征,面向国家战略需求,为经济社会的创新.协调.绿色.开放.共享发展提供底层支撑的具有乘数效应 ...
- MIMO OFDM 常用信号检测算法
MIMO OFDM 系统检测算法 1. 前言 MIMO的空分复用技术可以使得系统在系统带宽和发射带宽不变的情况下容易地获得空间分集增益和信道的容量增益.OFDM技术采用多个正交的子载波并行传输数据,使 ...
- OSG中的HUD
OSG中的HUD 所谓HUD节点,说白了就是无论三维场景中的内容怎么改变,它都能在屏幕上固定位置显示的节点. 实现要点: 关闭光照,不受场景光照影响,所有内容以同一亮度显示 关闭深度测试 调整渲染顺序 ...
- osg实例介绍
osg实例介绍 转自:http://blog.csdn.net/yungis/article/list/1 [原]osgmotionblur例子 该例子演示了运动模糊的效果.一下内容是转自网上的:原理 ...
- OSG动画学习
OSG动画学习 转自:http://bbs.osgchina.org/forum.php?mod=viewthread&tid=3899&_dsign=2587a6a9 学习动画,看了 ...
- 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别
[源码下载] 重新想象 Windows 8 Store Apps (50) - 输入: 边缘手势, 手势操作, 手势识别 作者:webabcd 介绍重新想象 Windows 8 Store Apps ...
- osg 中鼠标拾取线段的端点和中点
//NeartestPointNodeVisitor.h #pragma once #include <osg\Matrix> #include <vector> #inclu ...
随机推荐
- 第十四天 jni 的使用
1. ndk 环境 2.jni hello 程序. 3.javah 生成头文件. 4.java 和c 之间数据传递. 5.C语言回调java 代码 通过反射.得到字节码,得到方法...
- Js获取下拉框选定项的值和文本
Js获取下拉框的值和文本网上提供了2种方法:但有些人很不负责任,他们根本没考虑到浏览器之间的差异导致的错误,导致很多新手琢磨了半天找不出错误! 下面我总结下Firefox和IE下获取下拉框选定项的值和 ...
- css+div打造三角形(箭头)
在很多网站都见过这样的箭头,之前我一直以为是图片,直到今天才知道原来可以用css做.开始看代码没太看懂,后来自己试了几遍才恍然大悟.贴出来分享下.(大神请直接忽略) 先看代码: HTML部分就是一个单 ...
- oracle 之索引,同义词 ,关键词,视图 ,存储过程,函数,触发器
--创建索引 关键词 index create[unique] index index_name on table_name(column_name [,column_name…]) [tablesp ...
- 解决:Unknown table engine 'InnoDB'
把查询mysql的结果输出到文件的过程中出现了错误 ERROR 1286 (42000): Unknown table engine 'InnoDB' 这个问题的原因是新版mysql是 ...
- uva 1151(最小生成树,枚举子集)
题意:平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方.另外还有q(0<=q<=8)个套餐,可以 ...
- uva 1658(最小费用最大流)
题意:一个带权有向图,求起点到终点的两条路径权值之和最小,且两条路径没有公共点(除起点,终点): 分析:拆点法,将u拆成u和u',u-u'容量为1,费用为0,这样就能保证每个点只用一次,起点s-s'容 ...
- hdu 1005 1021 递归超限 找规律 // 只要看题中n较大都是有规律的
因为n>1000000000所以用递归 数组超限, 由递归函数f(n)=(A*f(n-1)+B*f(n-2))%7; 因为是除7的余数 因次一共有7*7=49种情况, 以后的值都和之前的对应相等 ...
- Ruby学习笔记
#!/usr/bin/ruby puts "Hello, Ruby, what is your name?" $name = STDIN.gets puts "Hi, I ...
- C++编程优化心得(持续更新)
1. 对齐原则.比如64位总线,每次寻址读取8B.编程时注意变量地址,尽量消耗总线最少的寻址次数.堆内存申请时,系统严格按照对齐原则分配,故而使用时候也尽量不要跨寻址边界. 2. 需要的时候,可为了效 ...