先看一眼PCA与KPCA的可视化区别:

PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理.
本文假设你已经知道了PCA算法的基本原理和步骤.


从原始输入空间到特征空间

普通PCA算法的输入:

  • 训练数据集\(D={x_1, \dots, x_m}\), \(x_i \in R^n\).
  • 目标降维维度: \(d\)
  • 新的测试数据\(x\)

Kernel PCA则需要在输入中加入一个指定的 kernel function \(\kappa\).
我们已经知道, 每个合法的 kernel function, 即对称和正半定的函数, 都能找到至少一个对应的feature mapping function \(\Phi\). 现在\(\kappa\)是已知的, \(\Phi\)是隐藏的:存在, 但对我们来说未知. 用\(\Phi\)把每个训练样本\(x_i\)映射到一个特征空间\(H\), 得到\(z_i\):
\[
z_i = \Phi(x_i)
\qquad
Z =
\left[
\begin{matrix}
z_1^T \\
z_2^T \\
\vdots \\
z_m^T
\end{matrix}
\right]
\]

均值化处理, 使每个维度的均值为0

均值向量:
\[
\mu = \frac 1m Z^T \left[\begin{matrix}1 \\ 1 \\ \vdots \\1\end{matrix}\right]_{m\times 1} = \frac 1m Z^T \beta
\]
从\(Z\)中每一行都减去\(\mu^T\):
\[
\bar Z = Z - \beta \mu^T = Z - \frac 1m \beta \beta^T Z
\]

协方差矩阵正交对角化

这一步有点绕.
因为协方差矩阵\(C = \bar Z^T \bar Z\)中有未知函数\(\Phi\), 所以没办法直接对角化. 在之前推导kernel svm和kernel linear regression算法的过程中, 我们都使用了kernel matrix:
\[
K =
\left [
\begin{matrix}
\Phi(x_1)^T \Phi(x_1), &\Phi(x_1)^T \Phi(x_2), &\dots &\Phi(x_1)^T \Phi(x_n) \\
\vdots &\dots &\dots &\vdots \\
\Phi(x_n)^T \Phi(x_1), &\Phi(x_n)^T \Phi(x_2), &\dots &\Phi(x_n)^T \Phi(x_n)
\end{matrix}
\right ]
\]
这次也不例外.
先看这个类似于\(K\)的均\(K\)矩阵:
\[
\bar K = \bar Z \bar Z^T
\]
假设\(\bar K\)有一个特征值\(\lambda\),对应的已规范化特征向量为\(u\):
\[
\bar Z \bar Z^T u = \lambda u
\]
两边同时左乘一个\(\bar Z^T\):
\[
\bar Z^T \bar Z \bar Z^T u = \bar Z^T\lambda u
\]
\[
\to C \bar Z^T u =\lambda \bar Z^Tu
\]
这代表\(\bar Z^T u\)是协方差矩阵\(C\)的特征向量, 对应的特征值也是\(\lambda\).
所以, 我们只需要规范正交对角化\(\bar K\), 就能对角化\(C\). 规范正交对角化操作的对象为:
\[
\bar K = \bar Z \bar Z^T = ( Z - \frac 1m \beta \beta^T Z)( Z^T - \frac 1m Z^T \beta \beta^T) = ZZ^T - \frac 1m \beta \beta^T ZZ^T - \frac 1m ZZ^T \beta \beta^T + \frac 1{m^2} \beta \beta^T ZZ^T \beta \beta^T = K - \frac 1m \beta \beta^T K - \frac 1m K\beta \beta^T + \frac 1{m^2} \beta \beta^T K \beta \beta^T
\]

特征向量规范化

由\(\bar K\)的规范化特征向量\(u\), 我们可以得到\(C\)的特征向量\(\bar Z^Tu\), 但它不一定是单位向量, 所以我们还要对它进行规范化处理.
\[
||u||^2 = u^T\bar Z \bar Z^Tu = u^T\lambda u = \lambda
\]
\[
p = \frac {\bar Z^Tu}{||\bar Z^Tu||} = \frac {\bar Z^Tu}{\sqrt \lambda}
\]
注意到了吧, 这里还是有\(\bar Z\)存在, 而\(\bar Z = Z - \frac 1m \beta \beta^T Z\), \(Z\)因为包含未知的\(\Phi\)所以也是未知的. 但是PCA的最终目的是降维, 会有一个输入向量\(x\), 到时又可与\(Z\)配合起来, 构成\(\kappa\).

对向量\(x\)进行降维操作

中间没写出来的步骤, 即特征值降序排列取前\(d\)个对应的特征向量, 与普通的PCA是一样的.
降维操作通过\(x\)在一个基上的投影操作即可说明.
\[
p^T\Phi(x) = \frac {u^T \bar Z \Phi(x)}{\sqrt \lambda} = \frac 1{\sqrt \lambda} u^T ( Z - \frac 1m \beta \beta^T Z) \Phi(x) = \frac 1{\sqrt \lambda} u^T (k - \frac 1m \beta \beta^T k) = \frac 1{\sqrt \lambda} u^T (I_{m \times m} - \frac 1m \beta \beta^T)k
\]
其中, \(\lambda\)与\(u\)分别是\(\bar K\)的特征值和对应的规范化特征向量,
\[
k =
\left [
\begin{matrix}
\kappa(x_1, x) \\
\kappa(x_2, x) \\
\vdots \\
\kappa(x_m, x) \\
\end{matrix}
\right]
\qquad
\beta = \left[\begin{matrix}1 \\ 1 \\ \vdots \\1\end{matrix}\right]_{m\times 1}
\]

Kernel Methods (5) Kernel PCA的更多相关文章

  1. Kernel Methods (4) Kernel SVM

    (本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...

  2. Kernel Methods (2) Kernel function

    几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...

  3. Kernel Methods (3) Kernel Linear Regression

    Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...

  4. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  5. 核方法(Kernel Methods)

    核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...

  6. PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)

    主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...

  7. Kernel methods on spike train space for neuroscience: a tutorial

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...

  8. Kernel Methods for Deep Learning

    目录 引 主要内容 与深度学习的联系 实验 Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information proce ...

  9. Kernel Methods (1) 从简单的例子开始

    一个简单的分类问题, 如图左半部分所示. 很明显, 我们需要一个决策边界为椭圆形的非线性分类器. 我们可以利用原来的特征构造新的特征: \((x_1, x_2) \to (x_1^2, \sqrt 2 ...

随机推荐

  1. 关于TD-LTE网络MRO分析中的一些疑问

    1.eNB天线到达角(LteScAOA)超出正常值范围 在OMC-R测量报告技术要求中此字段的定义为: "定义了一个用户相对参考方向的估计角度.测量参考方向应为正北,逆时针方向.可以辅助确定 ...

  2. [No00001B]到底如何培养语感?

  3. uva10167 Birthday Cake

    Lucy and Lily are twins. Today is their birthday. Mother buys a birthday cake for them. Now we put t ...

  4. 逗号分隔的字符串转换为行数据(collection)

    逗号分隔的字符串转换为行数据(collection) CREATE OR REPLACE FUNCTION "GET_STR_TAB" (v_str in varchar2) re ...

  5. AAL模版 中英文对照

    来源:http://52brain.com/thread-17336-1-1.html Brodmann分区是一个根据细胞结构将大脑皮层划分为一系列解剖区域的系统.神经解剖学中所谓细胞结构(Cytoa ...

  6. css3 box-sizing属性

    个人总结: 如果需要兼容IE6 IE7,使用content-box.现在流行bootstrap3,需注意它使用的是border-box. box-sizing属性可以为三个值之一:content-bo ...

  7. Openjudge 1.13-40 提取数字串按数值排序

    40:提取数字串按数值排序 查看 总时间限制:  1000ms 内存限制:  65536kB 描述 给定一个字符串,请将其中的所有数字串提取,并将每个数字串作为整数看待(假设可以用int 表示),按从 ...

  8. Use Dapper ORM With ASP.NET Core

    Dapper.NET is not just another ORM tool, it's considered as the king of ORM. Because it's fast, easy ...

  9. web 前端常用组件【01】Pagination 分页

    分页组件几乎是一般网站都会涉及到的组件,网上有很多这样的插件,自己挑来跳去选择了这一款. 官方Demo网址:http://mricle.com/JqueryPagination 功能强大,可扩展性比较 ...

  10. 给Asp.Net MVC及WebApi添加路由优先级

    一.为什么需要路由优先级 大家都知道我们在Asp.Net MVC项目或WebApi项目中注册路由是没有优先级的,当项目比较大.或有多个区域.或多个Web项目.或采用插件式框架开发时,我们的路由注册很可 ...