C. Mike and Frog
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike has a frog and a flower. His frog is named Xaniar and his flower is named Abol. Initially(at time 0), height of Xaniar is h1 and height of Abol is h2. Each second, Mike waters Abol and Xaniar.

So, if height of Xaniar is h1 and height of Abol is h2, after one second height of Xaniar will become  and height of Abol will become  where x1, y1, x2 and y2 are some integer numbers and  denotes the remainder of amodulo b.

Mike is a competitive programmer fan. He wants to know the minimum time it takes until height of Xania is a1 and height of Abol is a2.

Mike has asked you for your help. Calculate the minimum time or say it will never happen.

Input

The first line of input contains integer m (2 ≤ m ≤ 106).

The second line of input contains integers h1 and a1 (0 ≤ h1, a1 < m).

The third line of input contains integers x1 and y1 (0 ≤ x1, y1 < m).

The fourth line of input contains integers h2 and a2 (0 ≤ h2, a2 < m).

The fifth line of input contains integers x2 and y2 (0 ≤ x2, y2 < m).

It is guaranteed that h1 ≠ a1 and h2 ≠ a2.

Output

Print the minimum number of seconds until Xaniar reaches height a1 and Abol reaches height a2 or print -1 otherwise.

Sample test(s)
input
5 
4 2
1 1
0 1
2 3
output
3
input
1023 
1 2
1 0
1 2
1 1
output
-1

题解:

In this editorial, consider p = ma = h1a′ = a1b = h2 and b′ = a2.

First of all, find the number of seconds it takes until height of Xaniar becomes a′ (starting from a) and call it q. Please note that q ≤ pand if we don't reach a′ after p seconds, then answer is  - 1.

If after q seconds also height of Abol will become equal to b′ then answer if q.

Otherwise, find the height of Abdol after q seconds and call it e.

Then find the number of seconds it takes until height of Xaniar becomes a′ (starting from a′) and call it c. Please note that c ≤ p and if we don't reach a′ after p seconds, then answer is  - 1.

if g(x) = Xx + Y, then find f(x) = g(g(...(g(x)))) (c times). It is really easy:

c = 1, d = 0
for i = 1 to c
c = (cX) % p
d = (dX + Y) % p

Then,

f(x)
return (cx + d) % p

Actually, if height of Abol is x then, after c seconds it will be f(x).

Then, starting from e, find the minimum number of steps of performing e = f(e) it takes to reach b′ and call it o. Please note thato ≤ p and if we don't reach b′ after p seconds, then answer is  - 1.

Then answer is x + c × o.

Time Complexity: 

 #include<stdio.h>
#include<string.h>
#include<algorithm>
typedef long long ll ;
ll mod ;
ll a , a1 ;
ll x , y ;
ll b , b1 ;
ll _x , _y ;
ll A , T ;
ll B , _T ; ll exgcd (ll a,ll b,ll& x,ll &y)
{
if(b==){
x=;
y=;
return a;
}
ll d = exgcd ( b , a % b , x , y ) ;
ll tmp = x ;
x = y ;
y = tmp - a / b * y ;
return d;
}
//用扩展欧几里得算法解线性方程ax+by=c;
void __exgcd(ll a , ll b , ll c )
{
ll x , y ;
ll d = exgcd ( a , b , x , y ) ;
if(c % d) {
puts ("-1") ;
return ;
} ll k = c / d ;
x *= k ; y *= k ;//求的只是其中一个解
if (d < ) d = -d ;
ll t1 = T / d , t2 = _T / d ;
// printf ("t1 = %I64d , t2 = %I64d\n" , t1 , t2 ) ;
//printf ("x = %I64d , y = %I64d\n" , x , y ) ;
if (x < || y < ) {
while (x < || y < ) {
x += t1 ;
y += t2 ;
}
}
else {
while (x >= && y >= ) {
x -= t1 ;
y -= t2 ;
}
x += t1 ;
y += t2 ;
}
//printf ("x = %I64d , y = %I64d\n" , x , y ) ;
printf ("%I64d\n" , A + T * y) ;
} bool workA ()
{
ll cnt = ;
ll c = a ;
while () {
cnt ++ ;
c = (c * x + y) % mod ;
if (c == a1) {
A = cnt ;
return true ;
}
if (cnt > mod) break ;
}
return false ;
} bool workB ()
{
ll cnt = ;
ll c = b ;
while () {
cnt ++ ;
c = (c * _x + _y) % mod ;
if (c == b1) {
B = cnt ;
return true ;
}
if (cnt > mod) break ;
}
return false ;
} bool workT ()
{
T = ;
ll cnt = ;
ll c = a1 ;
while () {
cnt ++ ;
c = (c * x + y) % mod ;
if (c == a1) {
T = cnt ;
return true ;
}
if (cnt > mod) break ;
}
return false ;
} bool work_T ()
{
_T = ;
ll cnt = ;
ll c = b1 ;
while () {
cnt ++ ;
c = (c * _x + _y) % mod ;
if (c == b1) {
_T = cnt ;
return true ;
}
if (cnt > mod) break ;
}
return false ;
} int main ()
{
//freopen ("a.txt" , "r" , stdin ) ;
while (~ scanf ("%I64d" , &mod)) {
scanf ("%I64d%I64d%I64d%I64d" , &a , &a1 , &x , &y) ;
scanf ("%I64d%I64d%I64d%I64d" , &b , &b1 , &_x , &_y) ;
if (!workA ()) puts ("-1") ;
else {
if (!workB ()) puts ("-1") ;
else if (A == B) printf ("%I64d\n" , A) ;
else {
workT () ;
work_T () ;
if (T == || _T == ) {
if (T == && _T == ) puts ("-1") ;
else if (T == ) {
if (A - B >= && (A - B) % _T == ) printf ("%I64d\n" , A) ;
else puts ("-1") ;
}
else if (_T == ) {
if (B - A >= && (B - A) % T == ) printf ("%I64d\n" , B) ;
else puts ("-1") ;
}
} else {
ll a = _T , b = -T , c = A - B ;
__exgcd (a , b , c) ;
}
}
}
}
return ;
}

题解:

一般情况:我们能用暴力求出a-->a1所需时间A , b-->b1所需时间B,a1-->a1时间Ta , b1-->b1时间Tb;

注意:A , B , Ta , Tb 都会在 “mod 时间”内完成,若没在这段时间内找到,则不存在。

所以为了达到目标显然需要满足一下等式:A + x * Ta = B + y * Tb ---- ①---> A - B = - Ta * x + Tb * y ----②;

那么问题就转变成了求该方程是否有整数解(这道题有整数解,就必有正整数解)。

根据扩展欧几里得算法:

      c = a * x + b * y ;

只要满足gcd (a , b) | c (及a,b的gcd为c的约数)时,该方程必有解,我们令 d = gcd (a , b) ;

则存在解时:(下面的_x , _y都假定为执行完 exgcd(a , b , x , y)后产生的 _x , _y)

其中一组特解:x' = _x * c / d ;(c = A - B)

       y' = _y * c / d ;

递推式:

    x = x' + Ta / fabs (d)  * k ;( k 为 参数)

    y = y' + Tb / fabs (d)  * k ;

然后我们只要暴力求出可行解(x , y)中与0最接近的即可 , A + x * Ta 及为答案。

暴力枚举:(简洁,大神的)

 #include <cstring>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <sstream>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <math.h>
#include <ctime>
#include <algorithm>
#include <vector>
#include <set>
#include <list>
#include <climits>
#include <cctype>
#include <bitset>
#include <iostream>
#include <complex> using namespace std; typedef stringstream ss;
typedef long long ll;
typedef pair<ll, ll> ii;
typedef vector<vector<ii> > vii;
typedef vector<string> vs;
typedef vector<ll> vi;
typedef vector<double> vd;
typedef long double ld;
typedef vector<vector<ll> > matrix;
typedef complex<double> point; #define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define sz(v) ((ll)v.size())
#define clr(v, d) memset(v, d, sizeof(v))
#define polar(r,t) ((r)*exp(point(0,(t))))
#define length(a) hypot((a).real(),(a).imag())
#define angle(a) atan2((a).imag() , (a).real())
#define vec(a,b) ((b)-(a))
#define dot(a,b) ((conj(a)*(b)).real())
#define cross(a,b) ((conj(a)*(b)).imag())
#define lengthSqr(a) dot(a,a)
#define rotate(v,t) ((v)*exp(point(0,t)))
#define rotateAbout(v,t,a) (rotate(vec(a,v),t)+(a))
#define reflect(v,m) (conj((v)/(m))*m)
#define dist(a,b) (sqrt(pow((a).real()-(b).real(),2.0)+pow((a).imag()-(b).imag(),2.0)))
#define normalize(a) ((a)/length(a)) int dx[] = { , -, , };
int dy[] = { , , , - };
double PI = 3.1415926535897932384626433832795; const ll oo = (ll) 1e9 + ;
const double eps = 1e-;
const ll mod = ; int main() {
//freopen("a.txt", "r", stdin);
ios_base::sync_with_stdio();
ll m, h1, a1, x1, y1, h2, a2, x2, y2;
cin >> m >> h1 >> a1 >> x1 >> y1 >> h2 >> a2 >> x2 >> y2;
ll idx1 = -, idx2 = -;
for (int i = ; i <= m; i++) {
h1 = (x1 * h1 + y1) % m;
if (h1 == a1) {
idx1 = i;
break;
}
}
for (int i = ; i <= m; i++) {
h2 = (x2 * h2 + y2) % m;
if (h2 == a2) {
idx2 = i;
break;
}
} if (idx1 == - || idx2 == -) {
cout << "-1" << endl;
return ;
} ll step1, step2;
for (int i = ; i <= m; i++) {
h1 = (x1 * h1 + y1) % m;
if (h1 == a1) {
step1 = i;
break;
}
}
for (int i = ; i <= m; i++) {
h2 = (x2 * h2 + y2) % m;
if (h2 == a2) {
step2 = i;
break;
}
}
//printf ("idx1 = %I64d , idx2 = %I64d , step1 = %I64d, step2 = %I64d\n" , idx1 , idx2 , step1 , step2 ) ;
for (int i = ; i <= * m; i++) {
if (idx1 == idx2) {
cout << idx1 << endl;
return ;
}
if (idx1 > idx2) {
idx2 += step2;
} else {
idx1 += step1;
}
}
cout << "-1" << endl;
return ;
}

CF #305 (Div. 2) C. Mike and Frog(扩展欧几里得&&当然暴力is also no problem)的更多相关文章

  1. 数论/暴力 Codeforces Round #305 (Div. 2) C. Mike and Frog

    题目传送门 /* 数论/暴力:找出第一次到a1,a2的次数,再找到完整周期p1,p2,然后以2*m为范围 t1,t2为各自起点开始“赛跑”,谁落后谁加一个周期,等到t1 == t2结束 详细解释:ht ...

  2. Codeforces Round #305 (Div. 1) A. Mike and Frog 暴力

     A. Mike and Frog Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/547/pr ...

  3. CF #305(Div.2) D. Mike and Feet(数学推导)

    D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  4. set+线段树 Codeforces Round #305 (Div. 2) D. Mike and Feet

    题目传送门 /* 题意:对于长度为x的子序列,每个序列存放为最小值,输出长度为x的子序列的最大值 set+线段树:线段树每个结点存放长度为rt的最大值,更新:先升序排序,逐个添加到set中 查找左右相 ...

  5. 暴力 Codeforces Round #305 (Div. 2) B. Mike and Fun

    题目传送门 /* 暴力:每次更新该行的num[],然后暴力找出最优解就可以了:) */ #include <cstdio> #include <cstring> #includ ...

  6. 字符串处理 Codeforces Round #305 (Div. 2) A. Mike and Fax

    题目传送门 /* 字符串处理:回文串是串联的,一个一个判断 */ #include <cstdio> #include <cstring> #include <iostr ...

  7. Codeforces Round #305 (Div. 2) B. Mike and Fun 暴力

     B. Mike and Fun Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/548/pro ...

  8. Codeforces Round #305 (Div. 2) A. Mike and Fax 暴力回文串

     A. Mike and Fax Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/548/pro ...

  9. Codeforces Round #305 (Div. 2) D. Mike and Feet 单调栈

    D. Mike and Feet time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

随机推荐

  1. 几个容易被忽略的mysql知识

    为什么标题要起这个名字呢?commen sence指的是那些大家都应该知道的事情,但往往大家又会会略这些东西,或者对这些东西一知半解,今天我总结下自己在mysql中遇到的一些commen sense类 ...

  2. memcached的分布式

    今天写点周末在火车上看的memcached的东西: 一:memcached的分布式 虽然memcached被称为“分布式”缓存服务器,但是服务器端并没有“分布式”的功能.而是通过客户端来实现的. Me ...

  3. Solution: Win 10 和 Ubuntu 16.04 LTS双系统, Win 10 不能从grub启动

    今年2月份在一台装了Windows的机器上装了Unbuntu 14.04 LTS (双系统, dual-boot, 现已升级到 16.04 LTS). 然而开机时要从grub启动 Windows (选 ...

  4. django 模板中url的处理

    在模板中直接添加‘/home’这样的链接是十分不推荐的,因为这是一个相对的链接,在不同网页中打开可能会返回不一样的结果. 所以推荐的是 <a href="{{ object.get_a ...

  5. 在Nginx中部署基于IP的虚拟主机

    一.虚拟主机概念 虚拟主机是在网络服务器上划分出一定的磁盘空间供用户放置站点.应用组件等,提供必要的站点功能.数据存放和传输功能.所谓虚拟主机,也叫"网站空间", 就是把一台运行在 ...

  6. JS判断是wap端访问网站还是PC端访问,然后进行自动跳转的代码

    <script type="text/javascript"> function goPAGE() { if ((navigator.userAgent.match(/ ...

  7. shiro 更改登录的用户名

    ShiroUser user = (ShiroUser) SecurityUtils.getSubject().getPrincipal(); user.name = newName;

  8. paramiko模拟ansible远程执行命令

    主模块 #!/usr/bin/env python from multiprocessing import Process import paramiko import time import sys ...

  9. Yii2-admin RBAC权限管理的实现

    原文地址:http://www.open-open.com/lib/view/open1434638805348.html   http://wlzyan.blog.163.com/blog/stat ...

  10. Mongodb的Samus驱动

    最近开始学习Mongodb方面的东西.. 看到有很多博主都说MongoDB的第三方驱动 Samus 对Linq的支持比较好..能够降低学习的成本..所以就想从这里开始.. 但是弊端在我学习了一半的时候 ...