E. Cactus
 

A connected undirected graph is called a vertex cactus, if each vertex of this graph belongs to at most one simple cycle.

A simple cycle in a undirected graph is a sequence of distinct vertices v1, v2, ..., vt (t > 2), such that for any i (1 ≤ i < t) exists an edge between vertices vi and vi + 1, and also exists an edge between vertices v1 and vt.

A simple path in a undirected graph is a sequence of not necessarily distinct vertices v1, v2, ..., vt (t > 0), such that for any i (1 ≤ i < t)exists an edge between vertices vi and vi + 1 and furthermore each edge occurs no more than once. We'll say that a simple pathv1, v2, ..., vt starts at vertex v1 and ends at vertex vt.

You've got a graph consisting of n vertices and m edges, that is a vertex cactus. Also, you've got a list of k pairs of interesting verticesxi, yi, for which you want to know the following information — the number of distinct simple paths that start at vertex xi and end at vertex yi. We will consider two simple paths distinct if the sets of edges of the paths are distinct.

For each pair of interesting vertices count the number of distinct simple paths between them. As this number can be rather large, you should calculate it modulo 1000000007 (109 + 7).

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 105; 1 ≤ m ≤ 105) — the number of vertices and edges in the graph, correspondingly. Next m lines contain the description of the edges: the i-th line contains two space-separated integers ai, bi (1 ≤ ai, bi ≤ n) — the indexes of the vertices connected by the i-th edge.

The next line contains a single integer k (1 ≤ k ≤ 105) — the number of pairs of interesting vertices. Next k lines contain the list of pairs of interesting vertices: the i-th line contains two space-separated numbers xiyi (1 ≤ xi, yi ≤ nxi ≠ yi) — the indexes of interesting vertices in the i-th pair.

It is guaranteed that the given graph is a vertex cactus. It is guaranteed that the graph contains no loops or multiple edges. Consider the graph vertices are numbered from 1 to n.

Output

Print k lines: in the i-th line print a single integer — the number of distinct simple ways, starting at xi and ending at yi, modulo1000000007 (109 + 7).

Examples
input
10 11
1 2
2 3
3 4
1 4
3 5
5 6
8 6
8 7
7 6
7 9
9 10
6
1 2
3 5
6 9
9 2
9 3
9 10
output
2
2
2
4
4
1

 题意:

   给你n个点,m条边的无向图,给出下面定义

  一般简单路的定义是一条无重复边和不经过重复点的路径,题述的定义是:可以经过重复点但无重复边的路径  

  无向图中的任意一点只属于一个简单环,然后询问任何两点间有多少条不同的简单路。

题解:  

  任意一点只属于一个简单环

  我们先缩环

  每个环当做点,那么在询问a到b的时候,环中点个数超过1的时候 就是存在两种走法,否则是1种,这个我们将它当作点权就好

  就相当于 求出一个树的LCA和点权乘

  每个点权求法和求lca中fa数组是一样的

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6, mod = 1e9+, inf = 2e9; int n,m,low[N],dfn[N],inq[N],q[N],top,tot,t,head[N],hav[N],scc,belong[N]; struct node{int to,next,id;}e[N * ];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;e[t].id=;head[u]=t++;} int dp[N][],fa[N][],dep[N];
vector<int > G[N];
void dfs(int u) {
dfn[u] = low[u] = ++tot;
q[++top] = u; inq[u] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(e[i].id) continue;
e[i].id = e[i^].id = ;
if(!dfn[to]) {
dfs(to);
low[u] = min(low[u],low[to]);
} else if(inq[to]) low[u] = min(low[u],dfn[to]);
}
if(low[u] == dfn[u]) {
scc++;
do{
inq[q[top]] = ;
belong[q[top]] = scc;
hav[scc] += ;
} while(u != q[top--]);
}
}
void rebuild() {
for(int i = ; i <= n; ++i) {
for(int j = head[i]; j; j = e[j].next) {
int to = e[j].to;
int x = belong[to];
int y = belong[i];
if(x != y) {
G[x].push_back(y);
}
}
}
}
void Tarjan() {
for(int i = ; i <= n; ++i) if(!dfn[i]) dfs(i);
rebuild();
for(int i = ; i <= scc; ++i) hav[i] = min(hav[i],);
} ////
void lca_dfs(int u,int p,int d) {
fa[u][] = p, dep[u] = d;
dp[u][] = hav[u];
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(to == p) continue;
lca_dfs(to,u,d+);
}
}
void lca_init() {
for(int i = ; i <= ; ++i) {
for(int j = ; j <= n; ++j) {
if(fa[j][i-]) {
dp[j][i] = (1ll * dp[j][i-] * dp[fa[j][i-]][i-]) % mod;
fa[j][i] = fa[fa[j][i-]][i-];
} else {
fa[j][i] = ;
dp[j][i] = ;
}
}
}
}
int lca(int x,int y) {
if(dep[x] > dep[y]) swap(x,y);
int ret = ;
for(int k = ; k < ; ++k) {
if( (dep[y] - dep[x])>>k & )
ret = 1LL * ret * dp[y][k] % mod, y = fa[y][k];
}
if(x == y) return 1LL * ret * hav[x] % mod;
for(int k = ; k >= ; --k) {
if(fa[x][k] != fa[y][k]) {
ret = 1LL * ret * dp[x][k] % mod;
ret = 1LL * ret * dp[y][k] % mod;
x = fa[x][k];
y = fa[y][k];
}
}
return 1LL * ret * dp[x][] % mod * dp[y][] % mod * hav[fa[x][]]% mod;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= m; ++i) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
Tarjan();
lca_dfs(,,);
lca_init();
int q;
scanf("%d",&q);
while(q--) {
int a,b;
scanf("%d%d",&a,&b);
if(belong[a] == belong[b]) {
puts("");continue;
}
printf("%d\n",lca(belong[a],belong[b]));
}
return ;
}

  

Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA的更多相关文章

  1. Codeforces Round #143 (Div. 2)

    A. Team 模拟. B. Magic, Wizardry and Wonders 可以发现\[d=a_1-a_2+a_3-a_4+\cdots\] 那么有\(odd=\lfloor \frac{n ...

  2. Codeforces Round #143 (Div. 2) (ABCD 思维场)

    题目连链接:http://codeforces.com/contest/231 A. Team time limit per test:2 seconds memory limit per test: ...

  3. codeforces水题100道 第十一题 Codeforces Round #143 (Div. 2) A. Team (brute force)

    题目链接:http://www.codeforces.com/problemset/problem/231/A题意:问n道题目当中有多少道题目是至少两个人会的.C++代码: #include < ...

  4. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  5. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  6. Codeforces Round #425 (Div. 2) Misha, Grisha and Underground(LCA)

    Misha, Grisha and Underground time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  7. Codeforces Round #111 (Div. 2)

    Codeforces Round #111 (Div. 2) C. Find Pair 题意 给\(N(N \le 10^5)\)个数,在所有\(N^2\)对数中求第\(K(K \le N^2)\)对 ...

  8. Codeforces Round #485 (Div. 2)

    Codeforces Round #485 (Div. 2) https://codeforces.com/contest/987 A #include<bits/stdc++.h> us ...

  9. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

随机推荐

  1. HDFS原理介绍

    HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表的论文翻版的.论文为GFS(Google File System)Googl ...

  2. CEF3开发者系列之进程间消息传递

    在使用CEF3作为框架开发过程中,实现WebSockets.XMLHttpRequest.JS与本地客户端交互等功能时,需要在渲染(Render)进程和浏览(Browser)进程中传递消息.CEF3在 ...

  3. 使用Java中的IO流,把A文件里的内容输入到B文件中

    我们先创建两个文本文件,out.txt和in.txt,在out.txt中输入"Hello World",然后使用FileInputStream把字符串读取出来,再使用FileOut ...

  4. delphi XE5下安卓开发技巧

    delphi XE5下安卓开发技巧 一.手机快捷方式显示中文名称 project->options->Version Info-label(改成需要显示的中文名即可),但是需要安装到安卓手 ...

  5. h5页面的公共css

    /*reset*/body,div,dl,dt,dd,ul,ol,li,h1,h2,h3,h4,h5,h6,pre,code,form,fieldset,legend,input,button,tex ...

  6. va_list使用

    http://www.programfan.com/blog/article.asp?id=41937

  7. 51nod 1605 棋盘问题 (博弈)

    题目:传送门. 题意:中文题.T组数据,每组给定一个n*m的棋盘,棋盘中的1代表黑色,0代表白色,每次可以将1或者非2质数的全黑色方形区域变为白色,不能操作者输,问谁能赢. 题解:每次可以将1或者非2 ...

  8. 真机测试无缘无故finish了。程序也没有启动

    去钥匙串里边把多余的证书删除, 然后reset xcode - preference - 选中你的appleID - iOS Development  -  reset

  9. Maven Java EE Configuration Problem 的完美解决办法

    背景: 最近在修改项目的时候,发现修改了项目依赖以后会出现如下图:Maven Java EE Configuration Problem 的问题,对于有强迫症的我来说,看到项目上面有个很小的红色小叉号 ...

  10. VS中新建类

    通常我们在VS中添加类,比如要声明一个car的类 我们通常在新建的时候会写成CCar,虽然新建出来的文件的名词是car,但是我们使用这个类来声明一个类的时候, 是CCar car; 如果新建类写成Ca ...