E. Cactus
 

A connected undirected graph is called a vertex cactus, if each vertex of this graph belongs to at most one simple cycle.

A simple cycle in a undirected graph is a sequence of distinct vertices v1, v2, ..., vt (t > 2), such that for any i (1 ≤ i < t) exists an edge between vertices vi and vi + 1, and also exists an edge between vertices v1 and vt.

A simple path in a undirected graph is a sequence of not necessarily distinct vertices v1, v2, ..., vt (t > 0), such that for any i (1 ≤ i < t)exists an edge between vertices vi and vi + 1 and furthermore each edge occurs no more than once. We'll say that a simple pathv1, v2, ..., vt starts at vertex v1 and ends at vertex vt.

You've got a graph consisting of n vertices and m edges, that is a vertex cactus. Also, you've got a list of k pairs of interesting verticesxi, yi, for which you want to know the following information — the number of distinct simple paths that start at vertex xi and end at vertex yi. We will consider two simple paths distinct if the sets of edges of the paths are distinct.

For each pair of interesting vertices count the number of distinct simple paths between them. As this number can be rather large, you should calculate it modulo 1000000007 (109 + 7).

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 105; 1 ≤ m ≤ 105) — the number of vertices and edges in the graph, correspondingly. Next m lines contain the description of the edges: the i-th line contains two space-separated integers ai, bi (1 ≤ ai, bi ≤ n) — the indexes of the vertices connected by the i-th edge.

The next line contains a single integer k (1 ≤ k ≤ 105) — the number of pairs of interesting vertices. Next k lines contain the list of pairs of interesting vertices: the i-th line contains two space-separated numbers xiyi (1 ≤ xi, yi ≤ nxi ≠ yi) — the indexes of interesting vertices in the i-th pair.

It is guaranteed that the given graph is a vertex cactus. It is guaranteed that the graph contains no loops or multiple edges. Consider the graph vertices are numbered from 1 to n.

Output

Print k lines: in the i-th line print a single integer — the number of distinct simple ways, starting at xi and ending at yi, modulo1000000007 (109 + 7).

Examples
input
10 11
1 2
2 3
3 4
1 4
3 5
5 6
8 6
8 7
7 6
7 9
9 10
6
1 2
3 5
6 9
9 2
9 3
9 10
output
2
2
2
4
4
1

 题意:

   给你n个点,m条边的无向图,给出下面定义

  一般简单路的定义是一条无重复边和不经过重复点的路径,题述的定义是:可以经过重复点但无重复边的路径  

  无向图中的任意一点只属于一个简单环,然后询问任何两点间有多少条不同的简单路。

题解:  

  任意一点只属于一个简单环

  我们先缩环

  每个环当做点,那么在询问a到b的时候,环中点个数超过1的时候 就是存在两种走法,否则是1种,这个我们将它当作点权就好

  就相当于 求出一个树的LCA和点权乘

  每个点权求法和求lca中fa数组是一样的

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e5+, M = 1e6, mod = 1e9+, inf = 2e9; int n,m,low[N],dfn[N],inq[N],q[N],top,tot,t,head[N],hav[N],scc,belong[N]; struct node{int to,next,id;}e[N * ];
void add(int u,int v) {e[t].next=head[u];e[t].to=v;e[t].id=;head[u]=t++;} int dp[N][],fa[N][],dep[N];
vector<int > G[N];
void dfs(int u) {
dfn[u] = low[u] = ++tot;
q[++top] = u; inq[u] = ;
for(int i = head[u]; i; i = e[i].next) {
int to = e[i].to;
if(e[i].id) continue;
e[i].id = e[i^].id = ;
if(!dfn[to]) {
dfs(to);
low[u] = min(low[u],low[to]);
} else if(inq[to]) low[u] = min(low[u],dfn[to]);
}
if(low[u] == dfn[u]) {
scc++;
do{
inq[q[top]] = ;
belong[q[top]] = scc;
hav[scc] += ;
} while(u != q[top--]);
}
}
void rebuild() {
for(int i = ; i <= n; ++i) {
for(int j = head[i]; j; j = e[j].next) {
int to = e[j].to;
int x = belong[to];
int y = belong[i];
if(x != y) {
G[x].push_back(y);
}
}
}
}
void Tarjan() {
for(int i = ; i <= n; ++i) if(!dfn[i]) dfs(i);
rebuild();
for(int i = ; i <= scc; ++i) hav[i] = min(hav[i],);
} ////
void lca_dfs(int u,int p,int d) {
fa[u][] = p, dep[u] = d;
dp[u][] = hav[u];
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i];
if(to == p) continue;
lca_dfs(to,u,d+);
}
}
void lca_init() {
for(int i = ; i <= ; ++i) {
for(int j = ; j <= n; ++j) {
if(fa[j][i-]) {
dp[j][i] = (1ll * dp[j][i-] * dp[fa[j][i-]][i-]) % mod;
fa[j][i] = fa[fa[j][i-]][i-];
} else {
fa[j][i] = ;
dp[j][i] = ;
}
}
}
}
int lca(int x,int y) {
if(dep[x] > dep[y]) swap(x,y);
int ret = ;
for(int k = ; k < ; ++k) {
if( (dep[y] - dep[x])>>k & )
ret = 1LL * ret * dp[y][k] % mod, y = fa[y][k];
}
if(x == y) return 1LL * ret * hav[x] % mod;
for(int k = ; k >= ; --k) {
if(fa[x][k] != fa[y][k]) {
ret = 1LL * ret * dp[x][k] % mod;
ret = 1LL * ret * dp[y][k] % mod;
x = fa[x][k];
y = fa[y][k];
}
}
return 1LL * ret * dp[x][] % mod * dp[y][] % mod * hav[fa[x][]]% mod;
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= m; ++i) {
int a,b;
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
Tarjan();
lca_dfs(,,);
lca_init();
int q;
scanf("%d",&q);
while(q--) {
int a,b;
scanf("%d%d",&a,&b);
if(belong[a] == belong[b]) {
puts("");continue;
}
printf("%d\n",lca(belong[a],belong[b]));
}
return ;
}

  

Codeforces Round #143 (Div. 2) E. Cactus 无向图缩环+LCA的更多相关文章

  1. Codeforces Round #143 (Div. 2)

    A. Team 模拟. B. Magic, Wizardry and Wonders 可以发现\[d=a_1-a_2+a_3-a_4+\cdots\] 那么有\(odd=\lfloor \frac{n ...

  2. Codeforces Round #143 (Div. 2) (ABCD 思维场)

    题目连链接:http://codeforces.com/contest/231 A. Team time limit per test:2 seconds memory limit per test: ...

  3. codeforces水题100道 第十一题 Codeforces Round #143 (Div. 2) A. Team (brute force)

    题目链接:http://www.codeforces.com/problemset/problem/231/A题意:问n道题目当中有多少道题目是至少两个人会的.C++代码: #include < ...

  4. Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn (类似LCA)

    题目链接:http://codeforces.com/problemset/problem/697/D 给你一个有规则的二叉树,大概有1e18个点. 有两种操作:1操作是将u到v上的路径加上w,2操作 ...

  5. Codeforces Round #343 (Div. 2) E. Famil Door and Roads lca 树形dp

    E. Famil Door and Roads 题目连接: http://www.codeforces.com/contest/629/problem/E Description Famil Door ...

  6. Codeforces Round #425 (Div. 2) Misha, Grisha and Underground(LCA)

    Misha, Grisha and Underground time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  7. Codeforces Round #111 (Div. 2)

    Codeforces Round #111 (Div. 2) C. Find Pair 题意 给\(N(N \le 10^5)\)个数,在所有\(N^2\)对数中求第\(K(K \le N^2)\)对 ...

  8. Codeforces Round #485 (Div. 2)

    Codeforces Round #485 (Div. 2) https://codeforces.com/contest/987 A #include<bits/stdc++.h> us ...

  9. Codeforces Round #296 (Div. 1) C. Data Center Drama 欧拉回路

    Codeforces Round #296 (Div. 1)C. Data Center Drama Time Limit: 2 Sec  Memory Limit: 256 MBSubmit: xx ...

随机推荐

  1. 时间和日期控件(Calendar1)

    取得选择的: taskItem["data"] = Calendar1.SelectedDate.ToShortDateString();

  2. Linux下安装Flask开发框架

    Flask是开发pythonweb的一个轻量级框架,适合初学者使用,当有了熟练的web基础后,再继续学习高级框架的开发,Linux一般安装好之后都会有python开发环境,给开发带来方便,下面是Fla ...

  3. Sql Server事务简单用法

    var conStr = "server=localhost;database=Data;user=sa;pwd=123456"; using (var connection = ...

  4. WebRequest 获取网页乱码

    问题:在用WebRequest获取网页源码时得到的源码是乱码. 原因:1,编码不对 解决办法:设置对应编码 WebRequest request = WebRequest.Create(Url);We ...

  5. 修改UINavigationController返回按钮颜色

    系统默认颜色是蓝色的 视觉效果非常难看 在push进的ViewController中写 //修改UINavigationController的文字颜色 self.navigationControlle ...

  6. codeforces 515B. Drazil and His Happy Friends 解题报告

    题目链接:http://codeforces.com/problemset/problem/515/B 题目意思:有 n 个 boy 和 m 个 girl,有 b 个 boy 和 g 个 girl ( ...

  7. 【linux】学习6

    鸟哥13章的东西 shell script速度较慢,适合用于系统管理,但不适合处理大量数值运算 var=$((运算内容)) 可以用来做变量的加减乘除求余运算 total=$(($firstnum*$s ...

  8. C++基础练习题(一): 查找最短单词

    /*<说明> 编程实现将字符串中最短的单词输出,在主函数中输入字符串,编写一个函数完成最短单词的查找 </说明>*/ #include<time.h> #inclu ...

  9. Odoo误删除服务产品造成的错误解决办法

    在Odoo8.0中删除了产品中的服务,会造成工时单模块的安装失败,信息如下所示: ParseError: "null value in column "name" vio ...

  10. rsync错误日志

    问题一: @ERROR: chroot failed rsync error: error starting client-server protocol (code 5) at main.c(152 ...