台大《机器学习基石》课程感受和总结---Part 1(转)
期末终于过去了,看看别人的总结:http://blog.sina.com.cn/s/blog_641289eb0101dynu.html
接触机器学习也有几年了,不过仍然只是个菜鸟,当初接触的时候英文不好,听不懂课,什么东西都一知半解。断断续续的自学了一些公开课和书以后,开始逐渐理解一些概念。据说,心得要写下来才记得住。据说,心得要与人分享。这里是自己一点非常粗浅的感想或者遇到的问题,不一定对,请自带滤镜。有大牛的看到了请指出错误,求轻拍,求指导。
- 有pattern,比如银行如何决定是不是给用户发信用卡。
- 这个pattern说不太清楚,没有明确的公式或者过程(要有了就直接用,还学个什么劲儿)
- 要有数据,没数据从哪里学...
- H复杂度越高,Ein越小,但是Eout有可能就很大。(Overfit)
- 反过来H复杂度不够,Ein可能较大,但是Ein和Eout之间的差别可能不大。(Underfit)
- 数据集太小,没几个点可以学。
- 数据的noise太大(stochastic noise,随机噪声)
- 使用的模型太复杂(这也是一种noise,叫做deterministic noise)
- 模型相对数据来说太复杂(叫做excessive power,这一点可以和第三点合二为一)
- H2 = H10从3次方开始系数都是0 (这看上去貌似是多次一举);
- 放宽条件-> H10任意3个系数不是0,其余是0;
- 继续放宽条件->H10的系数的平方和小于C(wTw <= C)(这样,既可以享受H10的能力/复杂度,又不会太过)。
- 我们需要将数据分成三个部分(训练,检验,和测试三个数据集)。各个模型在训练数据上进行训练,会从自己的Hypothesis set中选出一个最佳的假设g作为这个假设集合的代表。
- 然后,各位代表再到检验数据上试一下效果如何,最后我们选择在检验数据上表现最好的g所对应的那个模型M。
- 再将训练和检验数据合并起来,让M在这个合并的数据上再去得到一个最终的假设g*,作为最终用来近似target function的结果。
- 那么这个g*到底表现怎样,我们可以在测试数据上测一下,作为g*能力的评判。
台大《机器学习基石》课程感受和总结---Part 1(转)的更多相关文章
- Coursera台大机器学习基础课程学习笔记1 -- 机器学习定义及PLA算法
最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一机器学习是什么? 感觉和 Tom M. Mitchell的定义几乎一致, A computer program ...
- Coursera台大机器学习基础课程学习笔记2 -- 机器学习的分类
总体思路: 各种类型的机器学习分类 按照输出空间类型分Y 按照数据标记类型分yn 按照不同目标函数类型分f 按照不同的输入空间类型分X 按照输出空间类型Y,可以分为二元分类,多元分类,回归分析以及结构 ...
- Coursera台大机器学习基础课程1
Coursera台大机器学习基础课程学习笔记 -- 1 最近在跟台大的这个课程,觉得不错,想把学习笔记发出来跟大家分享下,有错误希望大家指正. 一 机器学习是什么? 感觉和 Tom M. Mitche ...
- Coursera台大机器学习技法课程笔记01-linear hard SVM
极其淡腾的一学期终于过去了,暑假打算学下台大的这门机器学习技法. 第一课是对SVM的介绍,虽然之前也学过,但听了一次感觉还是很有收获的.这位博主总结了个大概,具体细节还是 要听课:http://www ...
- Coursera台大机器学习技法课程笔记14-Radial Basis Function Network
将Radial Basis Function与Network相结合.实际上衡量两个点的相似性:距离越近,值越大. 将神经元换为与距离有关的函数,就是RBF Network: 可以用kernel和RBF ...
- Coursera台大机器学习技法课程笔记03-Kernel Support Vector Machine
这一节讲的是核化的SVM,Andrew Ng的那篇讲义也讲过,讲的也不错. 首先讲的是kernel trick,为了简化将低维特征映射高维特征后的计算,使用了核技巧.讲义中还讲了核函数的判定,即什么样 ...
- Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree
将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...
- Coursera台大机器学习技法课程笔记10-Random forest
随机森林就是要将这我们之前学的两个算法进行结合:bagging能减少variance(通过g们投票),而decision tree的variance很大,资料不同,生成的树也不同. 为了得到不同的g, ...
- Coursera台大机器学习技法课程笔记04-Soft-Margin Support Vector Machine
之前的SVM非常的hard,要求每个点都要被正确的划分,这就有可能overfit,为此引入了Soft SVM,即允许存在被错分的点,将犯的错放在目 标函数中进行优化,非常类似于正则化. 将Soft S ...
- Coursera台大机器学习技法课程笔记02-Dual Support Vector Machine
这节课讲的是SVM的对偶问题,比较精彩的部分:为何要使用拉格朗日乘子以及如何进行对偶变换. 参考:http://www.cnblogs.com/bourneli/p/4199990.html http ...
随机推荐
- css写一个梯形
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>D ...
- Daily Scrum – 1/19
Meeting Minutes 绑定了快捷键: 改良了user course: 修了一系列Bug: 准备进行演示 Progress part 组员 今日工作 Time (h) 明日计划 Time ...
- 传智168期JavaEE就业班 day01-html
* HTML * HTML: HyperText Markup Language 超文本标记语言. * HTML是最基础的网页语言. * HTML的代码都是由标签所组成. * HTML的基本格式 &l ...
- zabbix_监控_邮件预警
一.解决的问题:当触发器满足条件被触发时,发邮件进行通知 二.软件及方案 使用外部邮箱发送邮件 使用mailx发送邮件,版本为12.4 zabbix版本为2.2.2 zabbix中使用执行脚本 ...
- SQL注入备忘单
Find and exploit SQL Injections with free Netsparker SQL Injection Scanner SQL Injection Cheat Sheet ...
- opencv笔记3:trackbar简单使用
time:2015年 10月 03日 星期六 13:54:17 CST # opencv笔记3:trackbar简单使用 当需要测试某变量的一系列取值取值会产生什么结果时,适合用trackbar.看起 ...
- BZOJ-1854 游戏 二分图匹配 (并查集)
1854: [Scoi2010]游戏 Time Limit: 5 Sec Memory Limit: 162 MB Submit: 3372 Solved: 1244 [Submit][Status] ...
- Springside学习
http://blog.chinaunix.net/uid-122937-id-3935052.html [一]Maven + Eclipse + springside4安装与配置 Maven安装与配 ...
- BZOJ4034 T2
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所 ...
- 洛谷P1203 [USACO1.1]坏掉的项链Broken Necklace
题目描述 你有一条由N个红色的,白色的,或蓝色的珠子组成的项链(3<=N<=350),珠子是随意安排的. 这里是 n=29 的二个例子: 第一和第二个珠子在图片中已经被作记号. 图片 A ...