BZOJ2460 [BeiJing2011]元素
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。 并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Source
//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
int n;
LL ans,p[];
struct thing{
int w;
LL id;
}a[MAXN]; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline LL getlong()
{
LL w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
}
inline bool cmp(thing q,thing qq){ return q.w>qq.w; } inline void work(){
n=getint(); for(int i=;i<=n;i++) a[i].id=getlong(),a[i].w=getint();
sort(a+,a+n+,cmp);//贪心地插入到线性基当中,权值越大的贡献越大,所以如果能插入线性基当中越早越好
for(int i=;i<=n;i++) {
for(int j=;j>=;j--) {
if(!(a[i].id>>j)) continue;//对线性基的这一位没有贡献
if(!p[j]) { p[j]=a[i].id; break; }//选入线性基中
a[i].id^=p[j];
}
if(a[i].id!=) ans+=a[i].w;
}
printf("%lld",ans);
} int main()
{
work();
return ;
}
BZOJ2460 [BeiJing2011]元素的更多相关文章
- bzoj千题计划193:bzoj2460: [BeiJing2011]元素
http://www.lydsy.com/JudgeOnline/problem.php?id=2460 按魔力值从小到大排序构造线性基 #include<cstdio> #include ...
- BZOJ2460 [BeiJing2011]元素 【线性基】
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MB Submit: 1675 Solved: 869 [Submit][St ...
- BZOJ2460 Beijing2011元素(线性基+贪心)
按价值从大到小考虑每个元素,维护一个线性基,如果向其中加入该元素的编号仍然构成线性基,则将其加入. 不会证明.当做线性基的一个性质吧. #include<iostream> #includ ...
- 【题解】 bzoj2460: [BeiJing2011]元素 (线性基)
bzoj2460,戳我戳我 Solution: 线性基板子,没啥好说的,注意long long 就好了 Code: //It is coded by Ning_Mew on 5.29 #include ...
- 【贪心】【线性基】bzoj2460 [BeiJing2011]元素
题意:让你求一些数在XOR下的带权极大无关组. 带权极大无关组可以用贪心,将这些数按权值从大到小排序之后,依次检验其与之前的数是否全都线性无关.可以用线性基来搞. 可以用拟阵严格证明,不过也可以脑补一 ...
- 【贪心】【线性基】bzoj2460 [BeiJing2011]元素 / bzoj3105 [cqoi2013]新Nim游戏
p2460: #include<cstdio> #include<algorithm> using namespace std; #define N 1001 typedef ...
- [bzoj2460] [BeiJing2011]元素(线性基+贪心)
题目大意: 有一些矿石,每个矿石有一个a和一个b值,要求选出一些矿石,b的和最大且不存在某个矿石子集它们的a的异或和为0. 解题关键:对魔力进行由大到小排序,依次加入线性基,统计即可. #includ ...
- 【BZOJ2460】[BeiJing2011]元素 贪心+高斯消元求线性基
[BZOJ2460][BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法 ...
- 【bzoj2460】[BeiJing2011]元素
2460: [BeiJing2011]元素 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 692 Solved: 372[Submit][Statu ...
随机推荐
- AC日记——神奇的幻方 洛谷 P2615(大模拟)
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
- 使用appscan实现多站扫描简单自动化
因为appscan在新建扫描任务的时候只能输入一个target,并且没有awvs/nessus那样提供web接口,导致我以前一直以为appscan不能像awvs那样批量建立任务自动扫描. 不过,今天要 ...
- IO流的练习4 —— 键盘录入学生成绩信息,进行排序后存入文本中
需求: 键盘录入5个学生信息(姓名,语文成绩,数学成绩,英语成绩),按照总分从高到低存入文本文件 分析: A:创建学生类 B:创建集合对象 TreeSet<Student> C:键盘录入学 ...
- 使用javascript获取url中的参数
方法一: //取url参数 var type = request("type") function request() { var query = location.search; ...
- 【转】【WPF】WPF样式(Style)—触发器
样式(Styles)由三部分构成:设置器(Setter).触发器(Triggers).资源(Resources). (1)触发器,让样式的使用更加准确.灵活和高效. (2)触发器(Triggers)主 ...
- [git]图解git常用命令
本文图解git中最常用的命令.如果你稍微理解git的工作原理,这篇文章能够让你理解的更透彻. 基本用法 约定 命令详解 Diff Commit Checkout Detached HEAD(匿名分支提 ...
- Activiti6.0 安装出错 log4j:ERROR setFile(null,true) call failed.
由于要选择一款合适的流程引擎,需要在jbpm和Activiti之间做对比,我这边负责Activiti的测试. 看到Activiti官网(http://www.activiti.org/download ...
- JS闭包的理解
闭包的两个特点: 1.作为一个函数变量的一个引用 - 当函数返回时,其处于激活状态.2.一个闭包就是当一个函数返回时,一个没有释放资源的栈区. 其实上面两点可以合成一点,就是闭包函数返回时,该函数内部 ...
- 20135223/20135234/20135229小组——亚博 Arduino智能小车实践报告
实验名称:Arduino智能小车组装和综合测试 实验小组成员:20135223何伟钦 20135234马启扬 20135229吕松鸿 实验日期:2015.10.27—2015.11.3 实验时长:24 ...
- I2C和LCD信号干扰的解决:硬件工程师都硬不起来,让软件工程师硬着头上
DEMO4,LCD的clk干扰I2C,I2C无法通信. 把排针压下,去掉LCD的CLK,恢复正常. 过程: 直接跳线I2C,没问题.两排针插到一起就无法通信. 一个个的排针去除,最终找到LCD ...