Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

Submit Status

Description

As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway. 
 

Input

The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file. 
 

Output

For each test case, you should output how many ways that all the trains can get out of the railway. 
 

Sample Input

1 2 3 10
 

Sample Output

1 2 5 16796

Hint

 The result will be very large, so you may not process it by 32-bit integers.
         
 

Source

求高精度的卡特兰数。

1.java代码,套公式就可以了。

import java.io.*;
import java.util.*;
import java.math.BigInteger; public class Main
{
public static void main(String args[])
{
BigInteger[] a = new BigInteger[101];
a[0] = BigInteger.ZERO;
a[1] = BigInteger.valueOf(1);
for(int i = 2; i <= 100; ++i)
a[i] = a[i - 1].multiply(BigInteger.valueOf(4 * i - 2)).divide(BigInteger.valueOf(i+1));
Scanner in = new Scanner(System.in);
int n;
while(in.hasNext())
{
n = in.nextInt();
System.out.println(a[n]);
}
}
}

2.C++代码,kuangbin模板

//h( n ) = ( ( 4*n-2 )/( n+1 )*h( n-1 ) );

#include<stdio.h>

//*******************************
//打表卡特兰数
//第 n个 卡特兰数存在a[n]中,a[n][0]表示长度;
//注意数是倒着存的,个位是 a[n][1] 输出时注意倒过来。
//*********************************
int a[][];
void ktl()
{
int i,j,yu,len;
a[][]=;
a[][]=;
a[][]=;
a[][]=;
len=;
for(i=;i<;i++)
{
yu=;
for(j=;j<=len;j++)
{
int t=(a[i-][j])*(*i-)+yu;
yu=t/;
a[i][j]=t%;
}
while(yu)
{
a[i][++len]=yu%;
yu/=;
}
for(j=len;j>=;j--)
{
int t=a[i][j]+yu*;
a[i][j]=t/(i+);
yu = t%(i+);
}
while(!a[i][len])
{
len--;
}
a[i][]=len;
} }
int main()
{
ktl();
int n;
while(scanf("%d",&n)!=EOF)
{
for(int i=a[n][];i>;i--)
{
printf("%d",a[n][i]);
}
puts("");
}
return ;
}

3.C++代码

#include <iostream>
#include <stdio.h>
#include <cmath>
using namespace std; int a[][]; //大数卡特兰数
int b[]; //卡特兰数的长度 void catalan() //求卡特兰数
{
int i, j, len, carry, temp;
a[][] = b[] = ;
len = ;
for(i = ; i <= ; i++)
{
for(j = ; j < len; j++) //乘法
a[i][j] = a[i-][j]*(*(i-)+);
carry = ;
for(j = ; j < len; j++) //处理相乘结果
{
temp = a[i][j] + carry;
a[i][j] = temp % ;
carry = temp / ;
}
while(carry) //进位处理
{
a[i][len++] = carry % ;
carry /= ;
}
carry = ;
for(j = len-; j >= ; j--) //除法
{
temp = carry* + a[i][j];
a[i][j] = temp/(i+);
carry = temp%(i+);
}
while(!a[i][len-]) //高位零处理
len --;
b[i] = len;
}
} int main()
{
int i, n;
catalan();
while(scanf("%d", &n) != EOF)
{
for(i = b[n]-; i>=; i--)
{
printf("%d", a[n][i]);
}
printf("\n");
} return ;
}

HDU 1023 Traning Problem (2) 高精度卡特兰数的更多相关文章

  1. 1023 Train Problem II(卡特兰数)

    Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...

  2. HDU 1023 Train Problem II (大数卡特兰数)

    Train Problem II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  3. HDU 1023 Train Problem II (卡特兰数,经典)

    题意: 给出一个数字n,假设火车从1~n的顺序分别进站,求有多少种出站序列. 思路: 卡特兰数的经典例子.n<101,用递推式解决.需要使用到大数.n=100时大概有200位以下. #inclu ...

  4. HDU 1023 Train Problem II( 大数卡特兰 )

    链接:传送门 题意:裸卡特兰数,但是必须用大数做 balabala:上交高精度模板题,增加一下熟悉度 /************************************************ ...

  5. Train Problem II(卡特兰数 组合数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...

  6. hdu 1023 Train Problem II

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1212 Train Problem II Description As we all know the ...

  7. 【HDU 5370】 Tree Maker(卡特兰数+dp)

    Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...

  8. HDU 1134 Game of Connections(卡特兰数+大数模板)

    题目代号:HDU 1134 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1134 Game of Connections Time Limit: 20 ...

  9. HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)

    Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...

随机推荐

  1. BZOJ2654 tree

    Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...

  2. Ecshop /admin/get_password.php Password Recovery Secrect Code Which Can Predict Vulnerability

    目录 . 漏洞描述 . 漏洞触发条件 . 漏洞影响范围 . 漏洞代码分析 . 防御方法 . 攻防思考 1. 漏洞描述 Ecshop提供了密码找回功能,但是整个密码找回流程中存在一些设计上的安全隐患 . ...

  3. Longest Common Subsequence (LCS)

    最长公共子序列(LCS)是经典的DP问题,求序列a[1...n], b[1..m]的LCS. 状态是DP[i][j],表示a[1..i],b[1..j]的LCS. DP转移方程是 DP[i][j]= ...

  4. UDP 内网穿透 心跳

    参考:http://blog.csdn.net/jacman/article/details/ 1: 启动一个Server. 2: 启动两个Client. 然后从Server端的Console里边可以 ...

  5. 轻量级应用开发之(08)UITableView

    一  UITableView基本介绍 在众多移动应⽤用中,能看到各式各样的表格数据 . 在iOS中,要实现表格数据展示,最常用的做法就是使用UITableView,UITableView继承自UISc ...

  6. poj1733Parity game

    Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7288   Accepted: 2833 Descr ...

  7. Android事件机制之一:事件传递和消费

    http://www.cnblogs.com/lwbqqyumidi/p/3500997.html 关于Android中的事件机制,用到的地方还是很多的,并且这个知识点还真有点复杂. 在写这篇文章前, ...

  8. JSTL标签库简介

    核心标签库 http://java.sun.com/jsp/jstl/core <c:catch>,<c:url>的使用 <!-- 捕获异常 --> <c:c ...

  9. asp.net在线恢复数据库

    用于asp.net还原与恢复SqlServer数据库的KillSpid存储过程 CREATE PROCEDURE KillSpid(@dbName varchar(20)) AS BEGIN DECL ...

  10. Python2.x与Python3.x的区别

    这个星期开始学习Python了,因为看的书都是基于Python2.x,而且我安装的是Python3.1,所以书上写的地方好多都不适用于Python3.1,特意在Google上search了一下3.x和 ...