Problem Description
Josh Lyman is a gifted painter. One of his great works is a glass painting. He creates some well-designed lines on one side of a thick and polygonal glass, and renders it by some special dyes. The most fantastic thing is that it can generate different meaningful paintings by rotating the glass. This method of design is called “Rotational Painting (RP)” which is created by Josh himself.

You are a fan of Josh and you bought this glass at the astronomical sum of money. Since the glass is thick enough to put erectly on the table, you want to know in total how many ways you can put it so that you can enjoy as many as possible different paintings hiding on the glass. We assume that material of the glass is uniformly distributed. If you can put it erectly and stably in any ways on the table, you can enjoy it.

More specifically, if the polygonal glass is like the polygon in Figure 1, you have just two ways to put it on the table, since all the other ways are not stable. However, the glass like the polygon in Figure 2 has three ways to be appreciated. 

Pay attention to the cases in Figure 3. We consider that those glasses are not stable.

 
Input
The input file contains several test cases. The first line of the file contains an integer T representing the number of test cases. 
For each test case, the first line is an integer n representing the number of lines of the polygon. (3<=n<=50000). Then n lines follow. The ith line contains two real number xi and yi representing a point of the polygon. (xi, yi) to (xi+1, yi+1) represents a edge of the polygon (1<=i<n), and (xn,yn) to (x1, y1) also represents a edge of the polygon. The input data insures that the polygon is not self-crossed.
 
Output
For each test case, output a single integer number in a line representing the number of ways to put the polygonal glass stably on the table.
 
题目大意:给一个简单多边形,问有多少种方法可以把这个多边形竖直稳定地放在一个平面上,如图所示。
思路:物理学告诉我们,要解决这个问题,首先要求出这个多边形质心,然后枚举每一种放法,看质心到地板的垂线是否在底边之间。
令G(i) = cross(p[i], p[i+1]), 质心为t,多边形的点集为p,cross为叉积。
那么t.x = sum(cross(p[i], p[i+1]) / 2 * (p[i].x + p[i + 1].x) / 3) / sum(cross(p[i], p[i+1]) / 2)
t.y = sum(cross(p[i], p[i+1]) / 2 * (p[i].y + p[i + 1].y) / 3) / sum(cross(p[i], p[i+1]) / 2)
这里不证明。
然后在不考虑稳定的情况下,多边形的放法显然取决于这个多边形的凸包的边数。
枚举凸包的每一条边,判断质心到地板的垂线的垂足是否在凸包的那条边之中。
若质心为O,底边的两点分别为A、B,那么垂足在AB上当且仅当∠OAB和∠OBA都为锐角。
那么向量AO和向量AB的点积为正数,那么∠OAB为锐角,∠OBA同理。
此题解决。
 
代码(281MS):
 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std;
typedef long long LL; const int MAXN = ;
const double EPS = 1e-; inline int sgn(double x) {
return (x > EPS) - (x < -EPS);
} struct Point {
double x, y;
Point(double x = , double y = ): x(x), y(y) {}
void read() {
scanf("%lf%lf", &x, &y);
}
Point operator + (const Point &rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (const Point &rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
double operator * (const Point &rhs) const {
return x * rhs.x + y * rhs.y;
}
Point operator / (const double &rhs) const {
return Point(x / rhs, y / rhs);
}
bool operator < (const Point &rhs) const {
if(y != rhs.y) return y < rhs.y;
return x < rhs.x;
}
};
typedef Point Vector; double cross(const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} double cross(const Point &sp, const Point &op, const Point &ep) {
return cross(sp - op, ep - op);
} void Graham_scan(Point *p, int n, int *stk, int &top) {
sort(p, p + n);
top = ;
stk[] = ; stk[] = ;
for(int i = ; i < n; ++i) {
while(top && cross(p[stk[top - ]], p[stk[top]], p[i]) <= ) --top;
stk[++top] = i;
}
int len = top;
stk[++top] = n - ;
for(int i = n - ; i >= ; --i) {
while(top != len && cross(p[stk[top - ]], p[stk[top]], p[i]) <= ) --top;
stk[++top] = i;
}
} Point barycenter(Point *p, int n) {
double area = ;
Point res;
for(int i = ; i < n; ++i) {
double t = cross(p[i], p[i + ]) / ;
res.x += t * (p[i].x + p[i + ].x) / ;
res.y += t * (p[i].y + p[i + ].y) / ;
area += t;
}
return res / area;
} Point p[MAXN];
int stk[MAXN], top;
int n, T; int main() {
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
for(int i = ; i < n; ++i) p[i].read();
p[n] = p[];
Point O = barycenter(p, n);
Graham_scan(p, n, stk, top); int ans = ;
for(int i = ; i < top; ++i) {
Point &A = p[stk[i]], &B = p[stk[i + ]];
ans += (sgn((O - A) * (B - A)) > && sgn((O - B) * (A - B)) > );
}
printf("%d\n", ans);
}
}

HDU 3685 Rotational Painting(多边形质心+凸包)(2010 Asia Hangzhou Regional Contest)的更多相关文章

  1. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  2. HDU 3689 Infinite monkey theorem(DP+trie+自动机)(2010 Asia Hangzhou Regional Contest)

    Description Could you imaging a monkey writing computer programs? Surely monkeys are smart among ani ...

  3. HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)

    Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...

  4. HDU 3721 Building Roads (2010 Asia Tianjin Regional Contest) - from lanshui_Yang

    感慨一下,区域赛的题目果然很费脑啊!!不过确实是一道不可多得的好题目!! 题目大意:给你一棵有n个节点的树,让你移动树中一条边的位置,即将这条边连接到任意两个顶点(边的大小不变),要求使得到的新树的直 ...

  5. HDU 3726 Graph and Queries(平衡二叉树)(2010 Asia Tianjin Regional Contest)

    Description You are given an undirected graph with N vertexes and M edges. Every vertex in this grap ...

  6. HDU 3698 Let the light guide us(DP+线段树)(2010 Asia Fuzhou Regional Contest)

    Description Plain of despair was once an ancient battlefield where those brave spirits had rested in ...

  7. HDU 3697 Selecting courses(贪心+暴力)(2010 Asia Fuzhou Regional Contest)

    Description     A new Semester is coming and students are troubling for selecting courses. Students ...

  8. HDU 3699 A hard Aoshu Problem(暴力枚举)(2010 Asia Fuzhou Regional Contest)

    Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...

  9. HDU 3696 Farm Game(拓扑+DP)(2010 Asia Fuzhou Regional Contest)

    Description “Farm Game” is one of the most popular games in online community. In the community each ...

随机推荐

  1. [daily][archlinux][pacman] local database 损坏

    下午,开心的看着dpdk的文档,做做各种小实验. 后台正常yaourt -Syu,三个多G的下载,我总是过很久才update一次. 然后KDE窗口各种异常,我知道又在开始更x相关的东西了.可是因为X异 ...

  2. ubuntu下opencv在Qt中的使用

    1. 编译安装OpenCV2.4.9  本博已有文章描述 2. 安装Qt和QtCreator 从qt-project.org 下载Qt安装文件 qt-opensource-linux-x64-5.4. ...

  3. ubuntu下c/c++开发环境配置

    刚转好的UBUNTU14.04.01 TLS . 试了一下GCC,结果如下不能编译 gcc -o hello hello.cpp gcc: error trying to exec 'cc1plus' ...

  4. nrf51822-主从通信分析1

    建议看该教程前,先看一下  简单扫描器实现  教程 讲解基于sdk目录下central中的两个例子. 关于主机的程序框架其实和从机都是一样的,都是基于事件驱动的框架. Main函数中完成初始化, 从机 ...

  5. php--sphinx的使用

    sphinx安装,配置,使用,分页 Sphinx简介 SQL   结构化查询语言(是一种标准,所有的关系型数据库Mysql,sqlserver,oracle) sphinx的使用两种方式: 第一种: ...

  6. iOS视图控制对象生命周期

    iOS视图控制对象生命周期-init.viewDidLoad.viewWillAppear.viewDidAppear.viewWillDisappear.viewDidDisappear的区别及用途 ...

  7. Linux 有问必答:如何知道进程运行在哪个 CPU 内核上?

    问题:我有个 Linux 进程运行在多核处理器系统上.怎样才能找出哪个 CPU 内核正在运行该进程? 当你在 多核 NUMA 处理器上运 行需要较高性能的 HPC(高性能计算)程序或非常消耗网络资源的 ...

  8. [LeetCode]题解(python):081 - Search in Rotated Sorted Array II

    题目来源 https://leetcode.com/problems/search-in-rotated-sorted-array-ii/ Follow up for "Search in ...

  9. magento

     打开 magento/app/code/core/Mage/Core/Model/Session/Abstract/varien.php//if (isset($cookieParams['doma ...

  10. SQLServer Note

    1. Grant necessory permission to user account, so it can use SQL profiler. USE masterGRANT ALTER TRA ...