http://wikioi.com/problem/1250/

我就不说这题有多水了。

0 1

1 1

矩阵快速幂

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << #x << " = " << x << endl
#define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } typedef int mtx[2][2];
void mul(mtx a, mtx b, mtx c, int la, int lb, int lc, int md) {
mtx t;
rep(i, la) rep(j, lc) {
t[i][j]=0;
rep(k, lb) t[i][j]=(t[i][j]+a[i][k]*b[k][j])%md;
}
rep(i, la) rep(j, lc) c[i][j]=t[i][j];
}
mtx a, b, c;
int main() {
int cs, n, q;
read(cs);
while(cs--) {
read(n); read(q);
a[0][0]=b[0][1]=b[1][0]=0;
a[0][1]=a[1][0]=a[1][1]=1;
b[0][0]=b[1][1]=1;
c[0][0]=0; c[0][1]=1;
while(n) {
if(n&1) mul(a, b, b, 2, 2, 2, q);
mul(a, a, a, 2, 2, 2, q);
n>>=1;
}
mul(c, b, c, 1, 2, 2, q);
printf("%d\n", c[0][1]);
}
return 0;
}

题目描述 Description

定义:f0=f1=1, fn=fn-1+fn-2(n>=2)。{fi}称为Fibonacci数列。

输入n,求fn mod q。其中1<=q<=30000。

输入描述 Input Description

第一行一个数T(1<=T<=10000)。

以下T行,每行两个数,n,q(n<=109, 1<=q<=30000)

输出描述 Output Description

文件包含T行,每行对应一个答案。

样例输入 Sample Input

3

6 2

7 3

7 11

样例输出 Sample Output

1

0

10

数据范围及提示 Data Size & Hint

1<=T<=10000

n<=109, 1<=q<=30000

【wikioi】1250 Fibonacci数列(矩阵乘法)的更多相关文章

  1. 1250 Fibonacci数列(矩阵乘法)

    1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1, fn=fn-1+fn ...

  2. CODEVS1533 Fibonacci数列 (矩阵乘法)

    嗯,,,矩阵乘法最基础的题了. Program CODEVS1250; ..,..] of longint; var T,n,mo:longint; a,b:arr; operator *(a,b:a ...

  3. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  4. 1250 Fibonacci数列(矩阵乘法快速幂)

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description 定义:f0=f1=1, f ...

  5. 1250 Fibonacci数列

    1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 定义:f ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  8. Loj10222 佳佳的Fibonacci(矩阵乘法)

    题面 给定\(n,m\),求: \[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项 题解 不妨设: \[ S(n)=\sum_{i= ...

  9. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

随机推荐

  1. 电够动力足——认识主板上的CPU供电模块

    CPU供电模块有啥用 CPU供电模块从字面上理解,就是专给CPU供电的一个电子元器件组合.因为CPU工作时就跟发动机一样,油(电)提供得稳不稳定.品质高不高就是CPU供电模块干的事情.反过来说,如果C ...

  2. Django authentication 使用方法

    转自 : https://docs.djangoproject.com/en/1.8/topics/auth/customizing/

  3. JavaScript toFixed()使用的注意事项

    以下是w3school的定义: 定义和用法 toFixed() 方法可把 Number 四舍五入为指定小数位数的数字. 语法 NumberObject.toFixed(num) 参数 描述 num 必 ...

  4. (转)SQL SERVER的锁机制(三)——概述(锁与事务隔离级别)

    五.锁与事务隔离级别 事务隔离级别简单的说,就是当激活事务时,控制事务内因SQL语句产生的锁定需要保留多入,影响范围多大,以防止多人访问时,在事务内发生数据查询的错误.设置事务隔离级别将影响整条连接. ...

  5. DLL工程没有生成对应的lib文件

    要至少导出一个函数/变量才能产生lib 也就是说得用到__declspec(dllexport)

  6. 解决 g++ error:/usr/lib/rpm/redhat/redhat-hardened-cc1 No that file and directory

    You need to install redhat-rpm-config which is required by some of the qt switches, probably: sudo d ...

  7. IDE整理

    1.eclipse 下载地址:http://www.eclipse.org/downloads/     2.myeclipse 下载地址:http://www.myeclipseide.com/mo ...

  8. 【Ubuntu14.04.1】设置开机可以Root用户身份登录

    $ sudo gedit /usr/share/lightdm/lightdm.conf.d/50-ubuntu.conf [SeatDefaults]user-session=ubuntugreet ...

  9. 类似于fopen与fopen64的种种情况

    在Linux和unix系统中,我们会遇到¥和¥64的情况.比如stat64,fopen64等 fopen64是linux特有 的,fopen64()函数和fopen()函数相同的,只是底层的文件描述符 ...

  10. Material Design入门(三)

    本文主要包括 CollapsingToolbarLayout实现滚动动画效果 ViewPager+tabLayout实现左右类Tab效果 控件介绍 这次需要用到得新控件比较多,主要有以下几个: Coo ...