堆排序是一种树形选择排序,是对直接选择排序的有效改进。

基本思想:

堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:

(a)大顶堆序列:(96, 83,27,38,11,09)

(b)  小顶堆序列:(12,36,24,85,47,30,53,91)

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序

因此,实现堆排序需解决两个问题: 1. 如何将n 个待排序的数建成堆; 2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。

首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。 调整小顶堆的方法:

1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。

2)将根结点与左、右子树中较小元素的进行交换。

3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).

4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).

5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。

称这个自根结点到叶子结点的调整过程为筛选。如图:

再讨论对n 个元素初始建堆的过程。 建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。

2)筛选从第个结点为根的子树开始,该子树成为堆。

3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。

如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)                               

八大排序算法之四选择排序—堆排序(Heap Sort)的更多相关文章

  1. 八大排序算法~简单选择排序【记录下标k变量的作用】

    八大排序算法~简单选择排序[记录下标k变量的作用] 1,思想:打擂台法,数组中的前n-1个元素依次上擂台"装嫩",后边的元素一个挨着一个不服,一个一个上去换掉它 2,优化:通过记录 ...

  2. Python排序算法之选择排序定义与用法示例

    Python排序算法之选择排序定义与用法示例 这篇文章主要介绍了Python排序算法之选择排序定义与用法,简单描述了选择排序的功能.原理,并结合实例形式分析了Python定义与使用选择排序的相关操作技 ...

  3. 排序算法总结------选择排序 ---javascript描述

    每当面试时避不可少谈论的话题是排序算法,上次面试时被问到写排序算法,然后脑袋一懵不会写,狠狠的被面试官鄙视了一番,问我是不是第一次参加面试,怎么可以连排序算法都不会呢?不过当时确实是第一次去面试,以此 ...

  4. 【DS】排序算法之选择排序(Selection Sort)

    一.算法思想 选择排序是一种简单直观的排序算法.它的工作原理如下: 1)将序列分成两部分,前半部分是已经排序的序列,后半部分是未排序的序列: 2)在未排序序列中找到最小(大)元素,放到已排序序列的末尾 ...

  5. 八大排序算法之三选择排序—简单选择排序(Simple Selection Sort)

    基本思想: 在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换:然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素 ...

  6. 常用排序算法之——选择排序(C语言+VC6.0平台)

    选择排序是另一种经典排序算法,核心思想是:在一趟找最小(大)数的过程中,先假设待排数据中的第一个数据即为最小(大)数据,然后循环将其他数据与该数据比较,每次比较时若小于该数据则让新数据成为最小(大)数 ...

  7. Java排序算法之选择排序

    一.算法原理 简单选择排序的基本思想:给定数组:int[] arr={里面n个数据}:第1趟排序,在待排序数据arr[1]~arr[n-1]中选出最小的数据,将它与arrr[0]交换:第2趟,在待排序 ...

  8. 【排序算法】选择排序(Selection sort)

    0. 说明 选择排序(Selection sort)是一种简单直观的排序算法. 它的工作原理如下. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最 ...

  9. 我的Java开发学习之旅------>Java经典排序算法之选择排序

    一.算法原理 对比数组中前一个元素跟后一个元素的大小,如果后面的元素比前面的元素小则用一个变量k来记住他的位置, 接着第二次比较,前面"后一个元素"现变成了"前一个元素& ...

随机推荐

  1. 【java开发系列】—— JDK安装

    前言 作为一个java开发者,安装JDK是不可避免的,但是配置路径却总是记不住,百度也有很多参考例子.这里仅仅当做以后参考的笔记记录. 说到JDK,就不得不提JRE.他们到底是什么呢? 通常我们进行j ...

  2. CommonJS规范

    CommonJS是一种规范,NodeJS是这种规范的实现.CommonJS是一 个不断发展的规范,计划将要包括如下部分: Modules Binary strings and buffers Char ...

  3. Lintcode: Maximum Subarray III

    Given an array of integers and a number k, find k non-overlapping subarrays which have the largest s ...

  4. Aptana Studio3开发Python和Ruby(最佳工具)

    即从: http://d1iwq2e2xrohf.cloudfront.net/tools/studio/standalone/3.3.1.201212171919/win/Aptana_Studio ...

  5. 封装mysqli类

    类: <?phpheader('content-type:text/html;charset=utf-8');/*掌握满足单例模式的必要条件(1)私有的构造方法-为了防止在类外使用new关键字实 ...

  6. CSS_01_CSS和html结合的方式3、4

    第01步:编写第01个css样式:div.css @charset "utf-8"; /*第01步:定义div:背景色.字体颜色*/ div{ background-color:# ...

  7. Cortex-R5

    TCM:Tightly Coupled Memory,连接到RAM等memory中,但是CPU读写速度很快. ECC:Error Checking and Correction PMU:Perform ...

  8. windows下pip升级到8.1.2

    升级pip只要切换到easy_install-3.5目录下:  easy_install-3.5 pip==8.1.2

  9. php获取网页中图片并保存到本地

    php获取网页中图片并保存到本地的代码,将网页中图片保存本地文件夹: save_img("http://www.jbxue.com" ?>

  10. Tomcat内存溢出解决办法

    使用Java程序从数据库中查询大量的数据时出现异常:java.lang.OutOfMemoryError: Java heap space在JVM中如果98%的时间是用于GC且可用的 Heap siz ...