WordCount是很多分布式计算中,最常用的例子,例如Hadoop、Storm,Iveely Computing也不例外。明白了WordCount在Iveely Computing上的运行原理,就很容易写出新的分布式程序。上一篇中已经知道了如何部署Iveely Computing以及提交任务,现在我们将深入WordCount的代码。

       一、代码结构

图3-1

从图3-1中,可以看出,类WordCount中,有两个子类WordInput、WordOutput,以及一个主方法,WordCount.java即是一个Topology,里面至少包涵一个Input和Output(缺一不可,否则没有意义),以及main函数,main函数依然是Topology的入口函数。

现在问题来了,Input和Output到底是什么关系?还有Topology?

每一个Topology就是一个完整的任务链,可以包含多个Input,多个Output,Input的数据只能传递给一个或多个Output,Output只能将数据传递给一个或多个Output,从而形成一个完整的拓扑结构。

       二、Input 深入

Input是数据的产生源,通过类WordInput看下是如何产生数据,并传递给Output的。

public static class WordInput extends IInput {

        /**
* Output data to collector.
*/
private StreamChannel _channel; /**
* All sample words.
*/
private final String[] _words = new String[] { "welcome", "iveely", "computing", "0.9.0", "build", "by",
"liufanping", "thanks", "github.com" }; private int _index; @Override
public void start(HashMap<String, Object> conf, StreamChannel channel) {
// Here,must be initialize channel.
_channel = channel;
_index = _words.length - 1;
} @Override
public void declareOutputFields(FieldsDeclarer declarer) {
declarer.declare(new String[] { "word" }, new Integer[] { 0 });
} @Override
public void nextTuple() {
if (_index < 0) {
_channel.emitEnd();
} else {
for (int i = 0; i < 100; i++) {
_channel.emit(_words[_index]);
}
_index--;
}
} @Override
public void end() {
System.out.println(getName() + " finished.");
} @Override
public void toOutput() {
_channel.addOutputTo(new WordOutput());
}
}

函数讲解:

start函数 在执行此Input之前提前调用的函数,用户初始化等相关工作,类似于构造函数,对有数据输出的时候,一定要初始化channel。
declareOutputFields函数 用于声明输出的数据信息。
nextTuple函数 此函数将会被频繁调用,用于输出数据,利用channel.emit提交数据到output。
end函数 是在Input执行完毕之后,会执行的代码,类似于析构函数。
toOutput函数 是指定Input的数据输出到的Output。

上面代码中,必须注意的几个问题:

2.1  WordInput必须继承IInput。

2.2  Input中,必须在start中初始化channel,因为input一定会产生数据。

2.3  Input中,toOutput函数中,必须指定数据流向。

      三、Output深入

Output是数据的处理单元,也可以是新数据的产生单元。

public static class WordOutput extends IOutput {

        private TreeMap<String, Integer> _map;

        @Override
public void start(HashMap<String, Object> conf, StreamChannel channel) {
_map = new TreeMap<>();
} @Override
public void declareOutputFields(FieldsDeclarer declarer) {
declarer.declare(new String[] { "word", "totalCount" }, null);
} @Override
public void execute(Tuple tuple) {
String word = tuple.get(0).toString();
if (_map.containsKey(word)) {
int currentCount = _map.get(word);
_map.put(word, currentCount + 1);
} else {
_map.put(word, 1);
}
} @Override
public void end() {
// Output map to database or print.
Iterator<String> it = _map.keySet().iterator();
while (it.hasNext()) {
String key = it.next();
int value = _map.get(key);
System.out.println(getName() + ":" + key + "," + value);
}
} @Override
public void toOutput() { }
}

与Input相比,output中没有nextTuple函数,而是取而代之的execute函数。nextTuple是产生数据,execute是处理数据。如果execute处理完毕之后的数据也需要提交到新的output中去,则需要在execute中利用channel.emit方法提交数据,此刻toOutput中也需要指定数据流向。

此处也需要注意几个问题:

3.1 如果output需要继续传递数据,则需要在start中初始化channel。

3.2 如果当前output接受的数据源来自不同的input,且数据格式不统一,则需要自行判断数据格式,例如传递数组中,第一个用int标识是什么样的数据格式。

       四、main函数

main函数,依然是Topology的执行入口,不同的是,它有两种执行方式,一个是本地模式,一个是远程执行模式。本地模式是用于调试用。

public static void main(String[] args) {
TopologyBuilder builder = new TopologyBuilder(true, WordCount.class.getName(), "WordCount");
builder.setInput(new WordInput(), 1);
builder.setOutput(new WordOutput(), 4);
builder.setSlave(2);
TopologySubmitter.submit(builder, args);
}

main函数中,主要做的工作。

4.1 新建TopologyBuilder对象,并在构造函数的第一个参数指定当前是本地模式(true)还是远程模式(false),第二个参数,指定执行的类名,第三个参数,当前Topology的名称。

4.2 设定input和output。并指定运行的数量比(线程)。

4.3 指定在多少个节点上运行(进程)。

4.4 利用TopologySubmitter提交任务即可。

4.5 注意:在生成jar提交到服务器上运行时,一定要将TopologyBuilder的第一个参数改为远程模式(false)。

开源分布式实时计算引擎 Iveely Computing 之 WordCount 详解(3)的更多相关文章

  1. 开源分布式实时计算引擎 Iveely Computing 之 安装部署(2)

          在Github中下载代码和二进制程序中,您都会看到一个bin\iveely computing目录,里面即是Iveely Computing的运行库.              以前总是有 ...

  2. 开源分布式实时计算引擎 Iveely Computing 之 本地调试Topology(4)

    当我们写完一个比较复杂的Topology之后,倘若直接提交到服务器上运行,难免会有很多问题,如何进行本地的调试Topology,是我们非常关心的问题.我们依然以WordCount作为代码示例. 首先, ...

  3. JStorm 是一个分布式实时计算引擎

    alibaba/jstorm JStorm 是一个分布式实时计算引擎. JStorm 是一个类似Hadoop MapReduce的系统, 用户按照指定的接口实现一个任务,然后将这个任务递交给JStor ...

  4. 基于Kafka的实时计算引擎如何选择?Flink or Spark?

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  5. 基于Kafka的实时计算引擎如何选择?(转载)

    1.前言 目前实时计算的业务场景越来越多,实时计算引擎技术及生态也越来越成熟.以Flink和Spark为首的实时计算引擎,成为实时计算场景的重点考虑对象.那么,今天就来聊一聊基于Kafka的实时计算引 ...

  6. 一文让你彻底了解大数据实时计算引擎 Flink

    前言 在上一篇文章 你公司到底需不需要引入实时计算引擎? 中我讲解了日常中常见的实时需求,然后分析了这些需求的实现方式,接着对比了实时计算和离线计算.随着这些年大数据的飞速发展,也出现了不少计算的框架 ...

  7. (第8篇)实时可靠的开源分布式实时计算系统——Storm

    摘要: 在Hadoop生态圈中,针对大数据进行批量计算时,通常需要一个或者多个MapReduce作业来完成,但这种批量计算方式是满足不了对实时性要求高的场景.那Storm是怎么做到的呢? 博主福利 给 ...

  8. Spark Streaming——Spark第一代实时计算引擎

    虽然SparkStreaming已经停止更新,Spark的重点也放到了 Structured Streaming ,但由于Spark版本过低或者其他技术选型问题,可能还是会选择SparkStreami ...

  9. 《大数据实时计算引擎 Flink 实战与性能优化》新专栏

    基于 Flink 1.9 讲解的专栏,涉及入门.概念.原理.实战.性能调优.系统案例的讲解. 专栏介绍 扫码下面专栏二维码可以订阅该专栏 首发地址:http://www.54tianzhisheng. ...

随机推荐

  1. SQL Server 2008 R2——VC++ ADO 操作 参数化查询

    ==================================声明================================== 本文原创,转载在正文中显要的注明作者和出处,并保证文章的完 ...

  2. STM32启动文件选择说明

    图1. STM32F10xxx标准外设库体系结构先说这个问题,大家都知道,我们在选择使用哪些外围的的时候,是去更改从官方模版中拷贝过来的stm32f10x_conf.h文件的27-48行,把我们要用的 ...

  3. java Timer(定时调用、实现固定时间执行)

    最近需要用到定时调用的功能.可以通过java的Timer类来进行定时调用,下面是有关Timer的一些相关知识. 其实就Timer来讲就是一个调度器,而TimerTask呢只是一个实现了run方法的一个 ...

  4. Ubuntu 14.04(32位)安装Oracle 11g(32位)全过程

    1.将系统更新到最新:sudo apt-get updatesudo apt-get dist-upgrade2.安装Oracle所需的依赖包:sudo apt-get install automak ...

  5. Hadoop blocks

    一In cases where the last record in a block is incomplete, the input split includes location informat ...

  6. myeclipse中运行tomcat报错java.lang.NoClassDefFoundError

    有关myeclipse的小问题,在myeclipse中运行tomcat时显示已启动,但是无法访问localhost:8080/,显示404错误.在控制台中发现报错代码如下: java.lang.NoC ...

  7. Linux的交叉编译 及configure配置

    这两天需要把一个CDVS的工程代码从Linux 平台上移植到ARM平台上,花了两天才搞定,之前很早申请的博客,到现在还没有技术文章会,以后决定凡是花两三天才搞定的东西都会把解决过程发到这里,很多东西靠 ...

  8. Zbrush 4R7 P3中各类模型怎么快速隐藏

    在ZBrush®软件中除了遮罩功能可以对模型局部进行编辑外,我们还可以通过显示和隐藏来对模型的局部进行控制. 查看更多内容请直接前往:http://www.zbrushcn.com/jichu/xia ...

  9. codeforces 577E E. Points on Plane(构造+分块)

    题目链接: E. Points on Plane time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  10. Linux安装、卸载软件

    在linux环境中,尤其是cenos中安装过一些软件,一般是二进制安装与源码安装,现小结一下linux中的安装与卸载. 一.通常Linux应用软件的安装包有三种: 1) tar包,如software- ...