n 皇后问题研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给定一个整数 n,返回所有不同的 n 皇后问题的解决方案。
每一种解法包含一个明确的 n 皇后问题的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
链接: leetcode.

解题思路:

  1. 这是一道非常经典的dfs问题,只需要从头依次枚举各个情况即可。
  2. 这样设计dfs方式,先依次枚举每一行,在每一行中,再枚举当前行的每一个元素,每次枚举完一行,就继续向下一行枚举。
  3. 根据题目规则,设计枚举过程的冲突数组,防止皇后之间相互攻击。而冲突数组需要进行回溯。
  4. 下面的代码中,只有列、和两个斜向冲三个冲突组,这是为什么?因为我的枚举方式是以行为单位,所以,行是不可能冲突的。
  5. 两个斜向矛盾判断就是根据斜率的计算方法,将棋盘上的二维点映射到y轴。而斜率为负一的算式中,可能会使得数组的索引为负数,所以,为了方式这种情况,需要再计算y轴坐标的时候,统一加n。
class Solution {
List<List<String>> res = new ArrayList<>();
// 冲突数组
boolean[] col, d, ud;
int num;
public List<List<String>> solveNQueens(int n) {
col = new boolean[n];
d = new boolean[2 * n];
ud = new boolean[2 * n];
num = n; // 一层的原始状态字符串
StringBuilder layer = new StringBuilder();
// 一种方案
List<String> plan = new ArrayList<>(); // 初始化层的原始值
for(int i = 0; i < n; i++) {
layer.append(".");
} dfs(0, layer, plan); return res;
} // cur:当前的层号
// layer:层的原始值
// plan:遍历到当前层的已定方案
public void dfs(int cur, StringBuilder layer, List<String> plan) {
if(num == cur) {
// 当遍历完最后一层,说明已经形成了一种方案,不需要再遍历下去。
res.add(new ArrayList<>(plan));
return;
} // 枚举当前层
for(int i = 0; i < num; i++) {
// 判断当前位置是不是已经被占用了
if(!col[i] && !d[cur + i] && !ud[cur - i + num]) {
// 占用当前位置
col[i] = true;
d[cur + i] = true;
ud[cur - i + num] = true;
layer.setCharAt(i, 'Q');
plan.add(layer.toString());
layer.setCharAt(i, '.'); // 继续枚举下一层
dfs(cur + 1, layer, plan); // 回溯
plan.remove(plan.size() - 1);
col[i] = false;
d[cur + i] = false;
ud[cur - i + num] = false; }
}
}
}

算法——n皇后问题的更多相关文章

  1. 回溯算法————n皇后、素数串

    回溯就是算法是搜索算法中一种控制策略,是一个逐个试探的过程.在试探的过程中,如果遇到错误的选择,就会回到上一步继续选择下一种走法,一步一步的进行直到找到解或者证明无解为止. 如下是一个经典回溯问题n皇 ...

  2. 算法——八皇后问题(eight queen puzzle)之回溯法求解

    八皇后谜题是经典的一个问题,其解法一共有种! 其定义: 首先定义一个8*8的棋盘 我们有八个皇后在手里,目的是把八个都放在棋盘中 位于皇后的水平和垂直方向的棋格不能有其他皇后 位于皇后的斜对角线上的棋 ...

  3. [算法] N 皇后

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  4. JS算法之八皇后问题(回溯法)

    八皇后这个经典的算法网上有很多种思路,我学习了之后自己实现了一下,现在大概说说我的思路给大家参考一下,也算记录一下,以免以后自己忘了要重新想一遍. 八皇后问题 八皇后问题,是一个古老而著名的问题,是回 ...

  5. 回溯算法 - n 皇后问题

    (1)问题描述 在 n × n 格的棋盘上放置彼此不受攻击的 n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 后问题等价于在 n × n 的棋盘上放置 n 个 ...

  6. 7, java数据结构和算法: 八皇后问题分析和实现 , 递归回溯

    什么是八皇后问题: 指的是,在一个8 * 8的棋盘中, 放置8个棋子, 保证这8个棋子相互之间, 不在同一行,同一列,同一斜线, 共有多少种摆法? 游戏连接: http://www.4399.com/ ...

  7. noj算法 8皇后打印 回溯法

    描述: 输出8皇后问题所有结果. 输入: 没有输入. 输出: 每个结果第一行是No n:的形式,n表示输出的是第几个结果:下面8行,每行8个字符,‘A’表示皇后,‘.’表示空格.不同的结果中,先输出第 ...

  8. 洛谷 P1219 八皇后【经典DFS,温习搜索】

    P1219 八皇后 题目描述 检查一个如下的6 x 6的跳棋棋盘,有六个棋子被放置在棋盘上,使得每行.每列有且只有一个,每条对角线(包括两条主对角线的所有平行线)上至多有一个棋子. 上面的布局可以用序 ...

  9. 【学习总结】java数据结构和算法-第一章-内容介绍和授课方式

    总目录链接 [学习总结]尚硅谷2019java数据结构和算法 github:javaDSA 目录 几个经典算法面试题 算法和数据结构的重要性 几个经典算法面试题 字符串匹配 暴力法:慢 kmp算法:更 ...

随机推荐

  1. 解密Cookie,这一篇就够了

    一.Cookie介绍 因为HTTP协议是无状态的,每次请求都是独立的,服务器端无法判断两次请求是否来自同一个用户,进而也就无法判断用户的登录状态,也不知道用户上一次做了什么.所以Cookie就是用来绕 ...

  2. Flink处理函数实战之一:深入了解ProcessFunction的状态(Flink-1.10)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  3. 卸载python安装的软件

    python源码安装的软件是无法通过命令卸载的,这个可以通过记录安装过程的形式来卸载安装的软件 以 python2.7.2 为例,在这个目录中有一个 setup.py 的文件,很显然这是安装程序,还是 ...

  4. 【appium】appium自动化入门之环境搭建(上)

     第 1 章 环境搭建 1.1 android-sdk 环境 前言 appium可以说是做app 适用最广泛的一个自动化框架,它的主要优势是支持android和ios ,另外脚本语言也是支持 java ...

  5. 企业级工作流解决方案(十四)--集成Abp和ng-alain--自动化脚本

    对于.net方向,做过自动化的,应该没有人不熟悉msbuild吧,非常强大的代码编译工具,.net平台的编译工作都是交给他来完成的,包括.net core的命令,本质上都是调用msbuild来执行的 ...

  6. 面经分享!蚂蚁金服三面被拒,重拾起鼓四面猿辅导成功拿下offer!

    前言 一直有小伙伴要我分享面经,说自己想面互联网公司,无奈经验太少想多看看其他人是怎么面的.我这两天刚好和一个刚拿到猿辅导offer的朋友吃了个饭,他向我说了说自己的面试经历.粉丝朋友是末流211毕业 ...

  7. 阿里四面P7稳了,得亏我会这些Spring面试题,果然大厂都爱问它们

    前言 先说一下本人情况吧,末流985毕业,毕业之后一直在一家不大不小的公司里安稳上班.上半年因为疫情的原因公司调整了工资,我也是随波逐流跟随大家辞了职.辞职之后向阿里.字节这些都投了简历(但是只收到了 ...

  8. 如何用ABBYY FineReader 识别表格

    ABBYY FineReader有着强大的OCR文字识别功能,不但可以将文件转换为文本文档或Word文档,也可以识别PDF文件或者图片上的表格,并且转换为Excel文件. 下面小编就使用ABBYY F ...

  9. Oracle表空间和他的数据文件

    //以myspace为例 来源于Oracle 11g数据库应用简明教程 清华出版社 /*创建表空间*/ CREATE TABLESPACE myspace DATAFILE'E:\develop\or ...

  10. LeetCode双周赛#34

    5492. 分割字符串的方案数 #组合公式 #乘法原理 #区间分割 题目链接 题意 给定01二进制串\(s\),可将\(s\)分割为三个非空 字符串\(s_1,s_2,s_3\),即(\(s_1+s_ ...