• 题意:有\(n\)个点对,找到它们之间的最短距离.

  • 题解:我们先对所有点对以\(x\)的大小进行排序,然后分治,每次左右二等分递归下去,当\(l+1=r\)的时候,我们计算一下距离直接返回给上一层,若\(l==r\)说明只有一个点,不能构成线段,返回\(INF\),于是当前区间的左右两边的最短距离我们找到了,之后还有一种情况,就是一个点在\(mid\)左边,一个在\(mid\)右边,由于左右两边的最短距离\(d\)已知,所以我们可以再划分一个区间\([mid-d,mid+d]\),容易证明,若最短距离横穿\(mid\)线的话,两点一定在这个区间内,我们用\(tmp\)数组记录区间内的点,然后再枚举这些点求它们的距离,但是这里要优化一下,假如它们之间纵坐标的距离>\(d\),那么一定是不合法的,具体细节见代码.

  • 代码:

    struct misaka{
    double x,y;
    }e[N],tmp[N]; int n; bool cmp1(misaka a,misaka b){
    if(a.x==b.x) return a.y<b.y;
    return a.x<b.x;
    } bool cmp2(misaka a,misaka b){
    if(a.y==b.y) return a.x<b.x;
    return a.y<b.y;
    } double dis(misaka a,misaka b){ //求距离
    double res=fabs(a.x-b.x)*fabs(a.x-b.x)+fabs(a.y-b.y)*fabs(a.y-b.y);
    return sqrt(res);
    } double MIN(double a,double b){ //手写求min
    if(a>b) return b;
    else return a;
    } double merge(int l,int r){
    if(l==r) return INF; //只有一个点
    if(l+1==r) return dis(e[l],e[r]); //递归边界,直接返回给上一层
    int mid=(l+r)>>1;
    int cnt=0;
    double d=MIN(merge(l,mid),merge(mid+1,r)); //求左边和右边的最小距离
    for(int i=l;i<=r;++i){
    if(fabs(e[mid].x-e[i].x)<=d){ //判断点是否在[mid-x,mid+x]内
    tmp[++cnt]=e[i];
    }
    }
    sort(tmp+1,tmp+1+cnt,cmp2); //按纵坐标排序
    for(int i=1;i<=cnt;++i){
    for(int j=i+1;j<=cnt && fabs(tmp[i].y-tmp[j].y)<=d;++j){ //若纵坐标的差大于d,直接下一个点
    d=MIN(d,dis(tmp[i],tmp[j]));
    }
    }
    return d;
    } int main() {
    //ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    scanf("%d",&n);
    for(int i=1;i<=n;++i) scanf("%lf %lf",&e[i].x,&e[i].y); sort(e+1,e+1+n,cmp1); double ans=merge(1,n); printf("%.4f\n",ans); return 0;
    }

洛谷 P1429 平面最近点对(加强版) (分治模板题)的更多相关文章

  1. (洛谷 P1429 平面最近点对(加强版) || 洛谷 P1257 || Quoit Design HDU - 1007 ) && Raid POJ - 3714

    这个讲的好: https://phoenixzhao.github.io/%E6%B1%82%E6%9C%80%E8%BF%91%E5%AF%B9%E7%9A%84%E4%B8%89%E7%A7%8D ...

  2. P1429 平面最近点对[加强版] 随机化

    LINK:平面最近点对 加强版 有一种分治的做法 因为按照x排序分治再按y排序 可以证明每次一个只会和周边的六个点进行更新. 好像不算很难 这里给出一种随机化的做法. 前置知识是旋转坐标系 即以某个点 ...

  3. 洛谷1429 平面最近点对(KDTree)

    qwq(明明可以直接分治过掉的) 但是还是当作联系了 首先,对于这种点的题,很显然的套路,我们要维护一个子树\(mx[i],mn[i]\)分别表示每个维度的最大值和最小值 (这里有一个要注意的东西!就 ...

  4. Luogu P1429 平面最近点对 【分治】By cellur925

    题目传送门 题目大意:给定平面上n个点,找出其中的一对点的距离,使得在这n个点的所有点对中,该距离为所有点对中最小的.$n$<=100000. $Algorithm$ 最朴素的$n^2$枚举肯定 ...

  5. Luogu P1429 平面最近点对(加强版)(分治)

    P1429 平面最近点对(加强版) 题意 题目描述 给定平面上\(n\)个点,找出其中的一对点的距离,使得在这\(n\)个点的所有点对中,该距离为所有点对中最小的. 输入输出格式 输入格式: 第一行: ...

  6. P1429 平面最近点对(加强版)(分治)

    P1429 平面最近点对(加强版) 主要思路: 分治,将点按横坐标为第1关键字升序排列,纵坐标为第2关键字升序排列,进入左半边和右半边进行分治. 设d为左右半边的最小点对值.然后以mid这个点为中心, ...

  7. Vijos 1012 清帝之惑之雍正 平面最近点对(分治)

    背景 雍正帝胤祯,生于康熙十七年(1678)是康熙的第四子.康熙61年,45岁的胤祯继承帝位,在位13年,死于圆明园.庙号世宗. 胤祯是在康乾盛世前期--康熙末年社会出现停滞的形式下登上历史舞台的.复 ...

  8. 洛谷P1067 多项式输出 NOIP 2009 普及组 第一题

    洛谷P1067 多项式输出 NOIP 2009 普及组 第一题 题目描述 一元n次多项式可用如下的表达式表示: 输入输出格式 输入格式 输入共有 2 行 第一行 1 个整数,n,表示一元多项式的次数. ...

  9. 计算几何 平面最近点对 nlogn分治算法 求平面中距离最近的两点

    平面最近点对,即平面中距离最近的两点 分治算法: int SOLVE(int left,int right)//求解点集中区间[left,right]中的最近点对 { double ans; //an ...

随机推荐

  1. 剑指offer-56数组中数字出现的次数

    题目 一个整型数组 nums 里除两个数字之外,其他数字都出现了两次.请写程序找出这两个只出现一次的数字.要求时间复杂度是O(n),空间复杂度是O(1). 输入:nums = [4,1,4,6] 输出 ...

  2. 修改hosts文件后不生效,该怎么办

    对于web开发来说,经常需要修改hosts文件,用来将域名与ip对应匹配.但是有时候发现hosts文件明明已经改了,但就是不生效,页面还会跳到某个丧心病狂的私人小站.hosts文件不生效有很多种原因, ...

  3. Loadrunner录制脚本与编写脚本的区别

    异同点: 1.录制的和编写的脚本质量上没有区别 2.性能脚本关心的是用户和服务器的数据交互,从这点上来看,录制和编写也没有区别,手动编写脚本也可以写出很真实的脚本 3.能录制的情况下,就录制吧,谁每天 ...

  4. YYDS: Webpack Plugin开发

    目录 导读 一.cdn常规使用 二.开发一个webpack plugin 三.cdn优化插件实现 1.创建一个具名 JavaScript 函数(使用ES6的class实现) 2.在它的原型上定义 ap ...

  5. 15V转5V转3.3V转3V芯片,DC-DC和LDO

    15V电压是属于一般电压,降压转成5V电压,3.3V电压和3V电压,适用于这个电压的DC-DC很多,LDO也是有可以选择的.LDO芯片如PW6206,PW8600等.DC-DC芯片如:PW2162,P ...

  6. ABP vNext 实现租户Id自动赋值插入

    背景 在使用ABP vNext过程中,因为我们的用户体系庞大,所以一直与其他业务同时开发,在开发其他业务模块时,我们一直存在着误区:认为ABP vNext 自动处理了数据新增时的租户Id(Tenant ...

  7. proxy_http_version 1.0 | 1.1

    Module ngx_http_proxy_module http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_http_ver ...

  8. (Sqlserver)sql求连续问题

    题目一:create table etltable( name varchar(20) , seq int, money int); create table etltarget ( name var ...

  9. (Oracle)DDL及其数据泵导入导出(impdp/expdp)

    create tablespace ybp_dev datafile 'G:\app\Administrator\oradata\health\ybp_dev1.dbf' size 10m autoe ...

  10. 学习Python之路

    陆续学习python已经有一段时间了,但是真正的安下心来学习还是在最近的一个月时间里,虽然每天学习的时间很有限,但是通过点滴的学习让自己感到从未有过的充实,完全打掉了以往认学学习一门语言难于登天的心理 ...