求幂&&快速幂&&位运算
1.普通的求幂方法:
时间复杂度为O(n),对于比较大的数在1s限时内可能会TLE
int pow(int base,int p){
int ans=1; for(int i=1;i<=p;i++)
ans*=base; return ans;
}
2.快速幂:
时间复杂度为logn
(1)结合位运算
原理:指数p可转化为2进制形式
则basep=basei(1)*2^0+i(2)*2^1+i(3)*2^2+……
=basei(1)*2^0*basei(2)*2^1*basei(3)*2^2*……
当i(n)=0时相当于乘了1,也就相当于什么也没乘,而每次待乘的数都是base2^k,乘不乘由系数i(k+1)决定,但不管乘不乘,下一次待乘的数都是base2^(k+1)即base2*2^k也就是(base2^k)2。
代码实现:
long long fastpow(long long base,long long p){
long long ans=1; while(p!=0){
if(p&1!=0)//如果这一位(二进制最后一位)为1,则乘上待乘的数(或P%2==1)
ans*=base; base*=base;
p>>=1;(或者p/=2)
} return ans;
}
(2)结合模运算
我们知道basep%d=(base%d)*(base%d)*(base%d)*……%d
=(base%d)p%d
上代码:
long long fastpowmod(long long base,long long p,long long d){
long long ans=1;
base%=d; while(p!=0){
if(p&1!=0)
ans=ans*base%d; base=base*base%d;
p>>=1;
}
ans%=d;//0次方特判 return ans;
}
求幂&&快速幂&&位运算的更多相关文章
- HDU 4549 矩阵快速幂+快速幂+欧拉函数
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 欧几里得算法(及扩展)&&快速幂(二分+位运算)
最近在二中苦逼地上课,天天听数论(当然听不懂) 但是,简单的还是懂一点的 1.欧几里得算法 说得这么高级干什么,gcd入门一个月的人都会吧,还需要BB? 证明可参照其他博客(不会),主要就是gcd(a ...
- nyoj 102 次方求摸 快速幂
点击打开链接 次方求模 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 求a的b次方对c取余的值 输入 第一行输入一个整数n表示测试数据的组数(n<100) 每组测 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 求1+2+……+n(位运算)
求1+2+3+...+n,要求不能使用乘除法.for.while.if.else.switch.case等关键字及条件判断语句(A?B:C). 我发现网上的做法都很神,各种理由编译的巧妙办法,就能间接 ...
- HDU 5607 graph 矩阵快速幂 + 快速幂
这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...
- 【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)
读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用 ...
- hdoj5667 BestCoder Round #80 【费马小定理(膜拜)+矩阵快速幂+快速幂】
#include<cstdio> #include<string> #include<iostream> #include<vector> #inclu ...
随机推荐
- Jenkins(1)安装
前言 jenkins的环境搭建方法有很多,本篇使用docker快速搭建一个jenkins环境. 环境准备: mac/Linux docker docker拉去jenkins镜像 先下载jenkins镜 ...
- 从NMEA0183到GNSS定位数据获取(一)原理篇
作者:良知犹存 转载授权以及围观:欢迎添加微信公众号:Conscience_Remains 总述 GPS我们都知道,一种用来全球定位的系统,后来俄罗斯推出了格洛纳斯定位系统,中国推出了北斗定位,欧盟有 ...
- 1152 Google Recruitment
题干前半略. Input Specification: Each input file contains one test case. Each case first gives in a line ...
- Codeforces Global Round 9 C. Element Extermination
题目链接:https://codeforces.com/contest/1375/problem/C 题意 给出一个大小为 $n$ 的排列 $a$,如果 $a_i < a_{i+1}$,则可以选 ...
- STL中去重函数unique
一:unique(a.begin(),a.end());去重函数只是去掉连续的重复值,对于不连续的值没有影响,SO,在使用前一般需要进行排序处理: 二: vector<int>::ite ...
- Educational Codeforces Round 88 (Rated for Div. 2) D. Yet Another Yet Another Task(枚举/最大连续子序列)
题目链接:https://codeforces.com/contest/1359/problem/D 题意 有一个大小为 $n$ 的数组,可以选取一段连续区间去掉其中的最大值求和,问求和的最大值为多少 ...
- 使用scrapy爬取jian shu文章
settings.py中一些东西的含义可以看一下这里 python的scrapy框架的使用 和xpath的使用 && scrapy中request和response的函数参数 & ...
- xml——dom&sax解析、DTD&schema约束
dom解析实例: 优点:增删改查一些元素等东西方便 缺点:内存消耗太大,如果文档太大,可能会导致内存溢出 sax解析: 优点:内存压力小 缺点:增删改比较复杂 当我们运行的java程序需要的内存比较大 ...
- 新疆大学ACM新生赛(公开赛) E.异或 (思维,位运算)
题意:RT 题解: \(i\ mod \ k=0\),即所有事\(k\)的倍数的位置都要进行异或,根据异或的性质,我们知道如果相同的异或的数个数是偶数的话,得出的结果是\(0\),所以每次询问,我们判 ...
- Codeforces Round #529 (Div. 3) F. Make It Connected (贪心,最小生成树)
题意:给你\(n\)个点,每个点都有权值,现在要在这\(n\)个点中连一颗最小树,每两个点连一条边的边权为两个点的点权,现在还另外给了你几条边和边权,求最小权重. 题解:对于刚开始所给的\(n\)个点 ...