PyTorch 自定义数据集
准备数据
准备 COCO128 数据集,其是 COCO train2017 前 128 个数据。按 YOLOv5 组织的目录:
$ tree ~/datasets/coco128 -L 2
/home/john/datasets/coco128
├── images
│ └── train2017
│ ├── ...
│ └── 000000000650.jpg
├── labels
│ └── train2017
│ ├── ...
│ └── 000000000650.txt
├── LICENSE
└── README.txt
定义 Dataset
torch.utils.data.Dataset 是一个数据集的抽象类。自定义数据集时,需继承 Dataset 并覆盖如下方法:
__len__:len(dataset)获取数据集大小。__getitem__:dataset[i]访问第i个数据。
详见:
自定义实现 YOLOv5 数据集的例子:
import os
from pathlib import Path
from typing import Any, Callable, Optional, Tuple
import numpy as np
import torch
import torchvision
from PIL import Image
class YOLOv5(torchvision.datasets.vision.VisionDataset):
def __init__(
self,
root: str,
name: str,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
transforms: Optional[Callable] = None,
) -> None:
super(YOLOv5, self).__init__(root, transforms, transform, target_transform)
images_dir = Path(root) / 'images' / name
labels_dir = Path(root) / 'labels' / name
self.images = [n for n in images_dir.iterdir()]
self.labels = []
for image in self.images:
base, _ = os.path.splitext(os.path.basename(image))
label = labels_dir / f'{base}.txt'
self.labels.append(label if label.exists() else None)
def __getitem__(self, idx: int) -> Tuple[Any, Any]:
img = Image.open(self.images[idx]).convert('RGB')
label_file = self.labels[idx]
if label_file is not None: # found
with open(label_file, 'r') as f:
labels = [x.split() for x in f.read().strip().splitlines()]
labels = np.array(labels, dtype=np.float32)
else: # missing
labels = np.zeros((0, 5), dtype=np.float32)
boxes = []
classes = []
for label in labels:
x, y, w, h = label[1:]
boxes.append([
(x - w/2) * img.width,
(y - h/2) * img.height,
(x + w/2) * img.width,
(y + h/2) * img.height])
classes.append(label[0])
target = {}
target["boxes"] = torch.as_tensor(boxes, dtype=torch.float32)
target["labels"] = torch.as_tensor(classes, dtype=torch.int64)
if self.transforms is not None:
img, target = self.transforms(img, target)
return img, target
def __len__(self) -> int:
return len(self.images)
以上实现,继承了 VisionDataset 子类。其 __getitem__ 返回了:
- image: PIL Image, 大小为
(H, W) - target:
dict, 含以下字段:boxes(FloatTensor[N, 4]): 真实标注框[x1, y1, x2, y2],x范围[0,W],y范围[0,H]labels(Int64Tensor[N]): 上述标注框的类别标识
读取 Dataset
dataset = YOLOv5(Path.home() / 'datasets/coco128', 'train2017')
print(f'dataset: {len(dataset)}')
print(f'dataset[0]: {dataset[0]}')
输出:
dataset: 128
dataset[0]: (<PIL.Image.Image image mode=RGB size=640x480 at 0x7F6F9464ADF0>, {'boxes': tensor([[249.7296, 200.5402, 460.5399, 249.1901],
[448.1702, 363.7198, 471.1501, 406.2300],
...
[ 0.0000, 188.8901, 172.6400, 280.9003]]), 'labels': tensor([44, 51, 51, 51, 51, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45,
45, 50, 50, 50, 51, 51, 60, 42, 44, 45, 45, 45, 50, 51, 51, 51, 51, 51,
51, 44, 50, 50, 50, 45])})
预览:

使用 DataLoader
训练需要批量提取数据,可以使用 DataLoader :
dataset = YOLOv5(Path.home() / 'datasets/coco128', 'train2017',
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()
]))
dataloader = DataLoader(dataset, batch_size=64, shuffle=True,
collate_fn=lambda batch: tuple(zip(*batch)))
for batch_i, (images, targets) in enumerate(dataloader):
print(f'batch {batch_i}, images {len(images)}, targets {len(targets)}')
print(f' images[0]: shape={images[0].shape}')
print(f' targets[0]: {targets[0]}')
输出:
batch 0, images 64, targets 64
images[0]: shape=torch.Size([3, 480, 640])
targets[0]: {'boxes': tensor([[249.7296, 200.5402, 460.5399, 249.1901],
[448.1702, 363.7198, 471.1501, 406.2300],
...
[ 0.0000, 188.8901, 172.6400, 280.9003]]), 'labels': tensor([44, 51, 51, 51, 51, 44, 44, 44, 44, 44, 45, 45, 45, 45, 45, 45, 45, 45,
45, 50, 50, 50, 51, 51, 60, 42, 44, 45, 45, 45, 50, 51, 51, 51, 51, 51,
51, 44, 50, 50, 50, 45])}
batch 1, images 64, targets 64
images[0]: shape=torch.Size([3, 248, 640])
targets[0]: {'boxes': tensor([[337.9299, 167.8500, 378.6999, 191.3100],
[383.5398, 148.4501, 452.6598, 191.4701],
[467.9299, 149.9001, 540.8099, 193.2401],
[196.3898, 142.7200, 271.6896, 190.0999],
[134.3901, 154.5799, 193.9299, 189.1699],
[ 89.5299, 162.1901, 124.3798, 188.3301],
[ 1.6701, 154.9299, 56.8400, 188.3700]]), 'labels': tensor([20, 20, 20, 20, 20, 20, 20])}
源码
参考
APIs:
GoCoding 个人实践的经验分享,可关注公众号!
PyTorch 自定义数据集的更多相关文章
- [转载]pytorch自定义数据集
为什么要定义Datasets: PyTorch提供了一个工具函数torch.utils.data.DataLoader.通过这个类,我们在准备mini-batch的时候可以多线程并行处理,这样可以加快 ...
- Pytorch划分数据集的方法
之前用过sklearn提供的划分数据集的函数,觉得超级方便.但是在使用TensorFlow和Pytorch的时候一直找不到类似的功能,之前搜索的关键字都是"pytorch split dat ...
- pytorch加载语音类自定义数据集
pytorch对一下常用的公开数据集有很方便的API接口,但是当我们需要使用自己的数据集训练神经网络时,就需要自定义数据集,在pytorch中,提供了一些类,方便我们定义自己的数据集合 torch.u ...
- MMDetection 快速开始,训练自定义数据集
本文将快速引导使用 MMDetection ,记录了实践中需注意的一些问题. 环境准备 基础环境 Nvidia 显卡的主机 Ubuntu 18.04 系统安装,可见 制作 USB 启动盘,及系统安装 ...
- Scaled-YOLOv4 快速开始,训练自定义数据集
代码: https://github.com/ikuokuo/start-scaled-yolov4 Scaled-YOLOv4 代码: https://github.com/WongKinYiu/S ...
- torch_13_自定义数据集实战
1.将图片的路径和标签写入csv文件并实现读取 # 创建一个文件,包含image,存放方式:label pokemeon\\mew\\0001.jpg,0 def load_csv(self,file ...
- Tensorflow2 自定义数据集图片完成图片分类任务
对于自定义数据集的图片任务,通用流程一般分为以下几个步骤: Load data Train-Val-Test Build model Transfer Learning 其中大部分精力会花在数据的准备 ...
- Pytorch自定义数据库
1)前言 虽然torchvision.datasets中已经封装了好多通用的数据集,但是我们在使用Pytorch做深度学习任务的时候,会面临着自定义数据库来满足自己的任务需要.如我们要训练一个人脸关键 ...
- [炼丹术]YOLOv5训练自定义数据集
YOLOv5训练自定义数据 一.开始之前的准备工作 克隆 repo 并在Python>=3.6.0环境中安装requirements.txt,包括PyTorch>=1.7.模型和数据集会从 ...
随机推荐
- 【疑】接入交换机lacp port-channel连接核心突然中断
现状: 职场网络架构为接入交换机2个端口通过lacp协议的active模式组成port-channel上联到核心. 具体配置如下 接入: 核心: 故障现象: zabbix监控到核心交换机对应该接入交换 ...
- springboot中的parent依赖作用详解
最近在阅读springboot+vue全栈开发实战,松哥编写的,虽然比较简单,各种技术没有深入讲解,但是还是可以看看的,特别是我这个前端菜鸟哈哈,以后可是要学习全栈的,把书中看到的不会的地方会记录下笔 ...
- 加快你ROS安装的一篇文章
前言: 首先ROS大家应该比较熟悉了哈,如果需要补充一下请看我之前的这篇文章 <嵌入式的我们为什么要学ROS>,对于嵌入式来说ROS是一个很好的进阶方向,所以如何快速的安装一个ROS到我们 ...
- 理解了这三点,才敢说自己会写Python代码
某同学应聘Python岗位被录用.上班第一天,Leader吩咐他写一个获取次日日期信息的函数.该同学信心满满地写下了这样一段代码, 然后就没有然后了. import time def get_next ...
- 2015 Multi-University Training Contest 10(9/11)
2015 Multi-University Training Contest 10 5406 CRB and Apple 1.排序之后费用流 spfa用stack才能过 //#pragma GCC o ...
- Codeforces Round #649 (Div. 2) A. XXXXX
题目链接:https://codeforces.com/contest/1364/problem/A 题意 找出大小为 $n$ 的数组 $a$ 的最长连续子数组,其元素和不被 $x$ 整除. 题解 如 ...
- 【uva 10048】Audiophobia(图论--Floyd算法)
题意:有一个N点M边的无向带权图,边权表示路径上的噪声值.有Q个询问,输出 x,y 两点间的最大噪声值最小的路径的该值.(N≤100,M≤1000,Q≤10000) 解法:N值小,且问多对点之间的路径 ...
- poj3757 Training little cats
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 11496 Accepted: 2815 Description Face ...
- CodeForces - 721D 贪心+优先队列(整理一下优先队列排序情况)
题意: 给你一个长度为n的数组,你可以对其中某个元素加上x或者减去x,这种操作你最多只能使用k次,让你输出操作后的数组,且保证这个数组所有元素的乘积尽可能小 题解: 在这之前我们要知道a*b>a ...
- cmder设置方法
一.添加鼠标右键 Cmder.exe /REGISTER ALL 二.添加系统环境变量 我的电脑 > 右键属性 > 高级系统设置 > 环境变量 > 系统变量,在path中添加 ...