数据的批标准化

本篇主要讲述什么是标准化,为什么要标准化,以及如何进行标准化(添加BN层)。

1.什么是标准化

  传统机器学习中标准化也叫做归一化。

  一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位(说白了就是让数据尽可能处于某个范围内)。

  数据标准化让机器学习模型看到的不同样本彼此之间更加相似,这有助于模型的学习与对新数据的泛化。

  常见的数据标准化形式:

     标准化:

    将数据减去其平均值使其中心值为0,然后将数据除以其标准差使其标准差为1。

    归一化:

    将数据减去最小值除以最大时,使取值范围压缩到0~1之间。

   批标准化:

  Batch Normalization(BN),批标准化

   和普通的数据标准化类似,是将分散的数据统一的一种做法,也是优化神经网络的一种方法。

   不仅在数据输入之前对数据做标准化,在网络模型的每一次变换之后都应该考虑数据的标准化。

   即使在训练过程中,均值和方差随着时间发生变化,它也可以适应性的将数据标准化。

2.为什么要做批标准化

   批标准化解决的问题是梯度消失梯度爆炸

   批标准化是一种训练优化方法

  梯度消失与梯度爆炸:

    对于激活函数,之前一直使用Sigmoid函数,其函数图像成一个S型,如下所示,它会使得输出在[0, 1]之间:

 
    如果我们输入的数据在0附近左右均匀分布,x的变化就会引起y的正常变化,就是一个正常的梯度变化。
   但是,当数据全部非常大,或者非常小的时候,x上的变化几乎不会引起y的变化,训练的速度就会非常缓慢,且效果差,这种情况就称为梯度消失。同理,在其他的激活函数中,也会出现数据范围导致的梯度异常激增,x上的微小变化就会导致y的剧烈变化,从而影响训练效果,这种情况称之为梯度爆炸。

  批标准化的好处:

  数据预处理可以加速收敛,同理,在神经网络中使用批标准化也可以加速收敛,而且还有更多的优点。

  1.具有正则化的效果(抑制过拟合)。

  2.提高模型泛化能力。

  3.允许更高的学习率从而加速收敛。

  4.批标准化有助于梯度的传播,因此能够使用更深的网络进行训练。对于特别深的神经网络,只有包含多个Batch Normalization(BN)层才能进行训练。

3.tensorflow实现批标准化

  Batch Normalization通常在卷积层或者全连接层之后使用(原始论文中一般是应用于卷积层或全连接层之后,在激活函数之前。但是,实际上放在激活函数之后效果可能更好)。

  使用tf.keras.layers.Batchnormalization()来实现。

  tf.keras.layers.Batchnormalization()不仅可以处理训练数据的均值和方差,也可以在预测时,根据训练数据均值和方差的期望值对测试数据进行处理。

  代码: 

1 model.add(tf.keras.layers.Conv2D(64, (3, 3)))
2 model.add(tf.keras.layers.BatchNormalization())
3 model.add(tf.keras.layers.Activation('relu'))
4 #两种BN层插入方式
5 model.add(tf.keras.layers.Conv2D(64, (3, 3), activation = 'relu'))
6 model.add(tf.keras.layers.BatchNormalization())

Tensorflow学习笔记No.6的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. CA定义以及功能说明

    当您访问以HTTPS开头的网站时,即表示正在使用CA.CA是Internet的重要组成部分.如果不存在CA,那么将无法安全在线购物以及使用网银在线业务等.什么是CA?CA具体是做什么的,又是如何确保您 ...

  2. vmware-workstation迁移虚拟机 15pro到12版本

    最近将测试的几台虚拟机进行了迁移,有几个点要注意,分享一下 1.环境介绍: 源服务器-ip-172.16.96.x 目标服务器-ip-172.16.96.x VMware版本-VMwareworkst ...

  3. web前端常见安全问题

    1,SQL注入 2,XSS 3,CSRF 4.文件上传漏洞 1,SQL注入:这个比较常见,可能大家也听说过,就是URL里面如果有对数据库进行操作的参数时,要做一下特殊的处理,否则被别有用心的人利用的话 ...

  4. C#知识点:操作XML

    XML是什么就不用说了文本标记语言. 主要纪录如何对XML文件进行增删改查. Xml的操作类都存在System.xml命名空间下面. 应用型的直接上代码 using System; using Sys ...

  5. java-介绍函数理解重载

    package day02; public class FunctionOverload { public static void main(String[] args){ int a = add(, ...

  6. Oracle用户自定义异常

    注意:普通的查询语句不会出现异常,只有使用into对变量进行赋值的时候才会发生异常 --系统变量: notfound --> if sql%notfund then 如果这个表达式为真,则 (增 ...

  7. .NET Core表达式树的梳理

    最近要重写公司自己开发的ORM框架:其中有一部分就是查询的动态表达式:于是对这方面的东西做了一个简单的梳理 官网的解释: 表达式树以树形数据结构表示代码,其中每一个节点都是一种表达式,比如方法调用和  ...

  8. CentOS7下mysql忘记root密码的处理方法

    1.  vi /etc/my.cnf,在[mysqld]中添加 skip-grant-tables 例如: [mysqld] skip-grant-tables datadir=/var/lib/my ...

  9. myBatis源码解析-二级缓存的实现方式

    1. 前言 前面近一个月去写自己的mybatis框架了,对mybatis源码分析止步不前,此文继续前面的文章.开始分析mybatis一,二级缓存的实现.附上自己的项目github地址:https:// ...

  10. [记录点滴]授人以渔,从Tensorflow找不到dll扩展到如何排查问题

    [记录点滴]授人以渔,从Tensorflow找不到dll扩展到如何排查问题 目录 [记录点滴]授人以渔,从Tensorflow找不到dll扩展到如何排查问题 0x00 摘要 0x01 引言 0x02 ...