在讨论Redis内存管理中的LRU算法之前,先简单说一下LRU算法:

LRU算法:即Least Recently Used,表示最近最少使用页面置换算法。是为虚拟页式存储管理服务的,是根据页面调入内存后的使用情况进行决策了。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU算法就是将最近最久未使用的页面予以淘汰,类似于末尾淘汰制。

比如:

如输入以下序列时:4,7,0,7,1,0,1,2,1,2,6

可以用一个特殊的栈来保存当前正在使用的各个页面的页面号。当一个新的进程访问某页面时,便将该页面号压入栈顶,其他的页面号往栈底移,如果内存不够,则将栈底的页面号移除。这样,栈顶始终是最新被访问的页面的编号,而栈底则是最近最久未访问的页面的页面号。

用java代码实现LRU算法如下:

  1 import java.util.ArrayList;
2 import java.util.List;
3
4
5 public class LRU {
6 /**
7 * 内存块的个数
8 */
9 public static final int N = 5;
10 /**
11 * 内存块数组
12 */
13 Object[] array = new Object[N];
14 private int size;
15
16 public LRU() {
17 }
18 /**
19 * 判断内存区是否为空
20 * @return
21 */
22 public boolean isEmpty() {
23 if(size == 0) {
24 return true;
25 } else {
26 return false;
27 }
28 }
29 /**
30 * 判断内存区是否达到最大值
31 * @return
32 */
33 public boolean isOutOfBoundary() {
34 if(size >=N) {
35 return true;
36 } else {
37 return false;
38 }
39 }
40 /**
41 * 查找元素o在数组中的位置
42 * @param o
43 * @return
44 */
45 public int indexOfElement(Object o) {
46 for(int i=0; i<N; i++) {
47 if(o == array[i]) {
48 return i;
49 }
50 }
51 return -1;
52 }
53 /**
54 * 有新的数据o需要申请内存
55 * @param o
56 * @return 移出内存区的数据
57 */
58 public Object push(Object o) {
59 int t = -1;
60 if(!isOutOfBoundary() && indexOfElement(o) == -1){
61 array[size] = o;
62 size ++;
63 } else if(isOutOfBoundary() && indexOfElement(o) == -1){
64 for(int i=0; i<size-1; i++) {
65 array[i] = array[i+1];
66 }
67 array[size-1] = o;
68 } else {
69 t = indexOfElement(o);
70 for(int i=t; i<size-1; i++) {
71 array[i] = array[i+1];
72 }
73 array[size-1] = o;
74 }
75 if( -1 == t) {
76 return null;
77 } else {
78 return array[t];
79 }
80 }
81 /**
82 * 输出内存区中的各数据
83 */
84 public void showMemoryBlock() {
85 for(int i=0; i<size; i++) {
86 System.out.print(array[i] + "\t");
87 }
88 }
89
90 /**
91 * @param args
92 */
93 public static void main(String[] args) {
94 Integer iter[] = {4,7,0,7,1,0,1,2,1,2,6};
95 LRU lru = new LRU();
96 for(int i=0; i<iter.length; i++) {
97 lru.push(iter[i]);
98 lru.showMemoryBlock();
99 System.out.println();
100 }
101 }
102
103 }

LRU算法也可以用于一些实际的应用中,如你要做一个浏览器,或类似于淘宝客户端的应用的就要用到这个原理。大家都知道浏览器在浏览网页的时候会把下载的图片临时保存在本机的一个文件夹里,下次再访问时就会,直接从本机临时文件夹里读取。但保存图片的临时文件夹是有一定容量限制的,如果你浏览的网页太多,就会一些你最不常使用的图像删除掉,只保留最近最久使用的一些图片。这时就可以用到LRU算法 了,这时上面算法里的这个特殊的栈就不是保存页面的序号了,而是每个图片的序号或大小;所以上面这个栈的元素都用Object类来表示,这样的话这个栈就可以保存的对象了。

Redis的数据淘汰机制

Redis提供了5种数据淘汰策略:

  • volatile-lru:使用LRU算法进行数据淘汰(淘汰上次使用时间最早的,且使用次数最少的key),只淘汰设定了有效期的key
  • allkeys-lru:使用LRU算法进行数据淘汰,所有的key都可以被淘汰
  • volatile-random:随机淘汰数据,只淘汰设定了有效期的key
  • allkeys-random:随机淘汰数据,所有的key都可以被淘汰
  • volatile-ttl:淘汰剩余有效期最短的key
    一般来说,推荐使用的策略是volatile-lru,并辨识Redis中保存的数据的重要性。
对于那些重要的,绝对不能丢弃的数据(如配置类数据等),应不设置有效期,这样Redis就永远不会淘汰这些数据。
对于那些相对不是那么重要的,并且能够热加载的数据(比如缓存最近登录的用户信息,当在Redis中找不到时,程序会去DB中读取),可以设置上有效期,这样在内存不够时Redis就会淘汰这部分数据。

配置方法: maxmemory-policy volatile-lru #默认是noeviction,即不进行数据淘汰 

 
Over...
 
参考:

Redis内存管理中的LRU算法的更多相关文章

  1. Redis 笔记整理:回收策略与 LRU 算法

    Redis的回收策略 noeviction:返回错误当内存限制达到并且客户端尝试执行会让更多内存被使用的命令(大部分的写入指令,但DEL和几个例外) allkeys-lru: 尝试回收最少使用的键(L ...

  2. 动手实现 LRU 算法,以及 Caffeine 和 Redis 中的缓存淘汰策略

    我是风筝,公众号「古时的风筝」. 文章会收录在 JavaNewBee 中,更有 Java 后端知识图谱,从小白到大牛要走的路都在里面. 那天我在 LeetCode 上刷到一道 LRU 缓存机制的问题, ...

  3. Redis 内存满了怎么办……

    我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限,所以我们在使用Redis的时候可以配置Redis能使用的最大的内存大小. 1.通过配置文件配置 通过在Redis安装目录 ...

  4. Redis 内存满了怎么办? Redis的内存淘汰策略

    https://juejin.im/post/5d674ac2e51d4557ca7fdd70 Redis占用内存大小 我们知道Redis是基于内存的key-value数据库,因为系统的内存大小有限, ...

  5. Redis内存回收:LRU算法

    Redis技术交流群481804090 Redis:https://github.com/zwjlpeng/Redis_Deep_Read Redis中采用两种算法进行内存回收,引用计数算法以及LRU ...

  6. redis的LRU算法(一)

    最近加班比较累,完全不想写作了.. 刚看到一篇有趣的文章,是redis的作者antirez对redis的LRU算法的回顾.LRU算法是Least Recently Used的意思,将最近最少使用的资源 ...

  7. Redis的LRU算法

    Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策 ...

  8. 【Redis 设置Redis使用LRU算法】

    转自:http://ifeve.com/redis-lru/ 本文将介绍Redis在生产环境中使用的Redis的LRU策略,以及自己动手实现的LRU算法(php) 1.设置Redis使用LRU算法 L ...

  9. LRU工程实现源码(一):Redis 内存淘汰策略

    目录 内存淘汰是什么?什么时候内存淘汰 内存淘汰策略 Redis中的LRU淘汰算法 源码剖析 第一步:什么时候开始淘汰key 配置读取 检查时机 getMaxmemoryState 第二步:淘汰哪些k ...

随机推荐

  1. printf函数输出格式总结

    printf函数格式 函数描述: printf("[格式化字符串]", [参数链表]); 函数声明: int printf(const char *format, ...) ; 输 ...

  2. SQLHelper ------ python实现

    SQLHelper ------ python实现 1.第一种: import pymysql import threading from DBUtils.PooledDB import Pooled ...

  3. codeup 1934 查找元素

    题目描述: 输入一个数n,然后输入n个数值各不相同,再输入一个值x,输出这个值在这个数组中的下标(从0开始,若不在数组中则输出-1. 输入: 测试数据有多组,输入n(1<=n<=200), ...

  4. OpenStack使用OVN

    1. Controller节点 1.1 安装 OVS和OVN 安装 Python3.7: yum -y groupinstall "Development tools" yum - ...

  5. centos7防火墙firewalld拒绝某ip或者某ip段访问服务器任何服务

    安装firewall后(LINUX7系统一般情况下默认已安装),防火墙默认配置是只打开SSH端口的,也就是22端口,如果SSH的端口已更改成别的端口了,请切记一定在启动firewall前先修改对应服务 ...

  6. vscode 远程开发安装

    1 首先windows 有ssh  程序 2 没有的话就直接使用git  bash 登录到远程服务器开发机上 3 再开一个Git bash  执行 ssh-keygen.exe   生成秘钥    然 ...

  7. py, pyc, pyw, pyo, pyd Compiled Python File (.pyc) 和Java或.NET相比,Python的Virtual Machine距离真实机器的距离更远

    https://my.oschina.net/renwofei423/blog/17404 1.      PyCodeObject与Pyc文件 通常认为,Python是一种解释性的语言,但是这种说法 ...

  8. Excel三个下拉互斥

    Excel三个下拉互斥 描述:Excel有三个下拉列表,若选择了其中任意一个下拉,其他两个均不可以在选择. 尝试了很多种办法,级联,数据有效性等等,最后都没实现. 老大,最后用VBA实现. 附上代码: ...

  9. SQL操作数据——SQL组成,查询基础语法,where,Oracle常用函数等

    SQL组成 DML数据操作语言 DCL数据控制语言 DQL数据查询语言 DDL数据定义语言 查询基础语法 记录筛选 where 子句 记录筛选 where 子句 实例练习 实例练习 Select语句中 ...

  10. MySql命令,吐血整理的Mysql,实话,真的吐血

    MySql命令,吐血整理的Mysql,实话,真的吐血 1.基本操作 2.数据库操作 3.表的操作 4.数据操作 5.字符集编码 6.数据类型(列类型) 7.列属性(列约束) 8.建表规范 9.SELE ...