STA树的深度(树型DP)
STA树的深度
题目大意
给出一个N个点的树,找出一个点来,以这个点为根的树时,所有点的深度之和最大
Input
给出一个数字N,代表有N个点.N<=1000000 下面N-1条边.
Output
输出你所找到的点,如果具有多个解,请输出编号最小的那个.
Sample Input
8
1 4
5 6
4 5
6 7
6 8
2 4
3 4
Sample Output
7
Solution
两种思路
第一就是贪心爆搜
第二就是DP
显然这道题贪心不可做
那么来考虑动态规划
设根节点为i的答案是\(dp_i\)
当前节点u的规模为\(size_u\)
那么更新答案的时候每次向下寻找一个子节点
深度就\(-=size_v\)并且\(+=(n - size_v)\)
现在只需要预处理出第一个\(dp_1\)
即可对所有状态进行转移
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
inline int read(){
int x = 0, w = 1;
char ch = getchar();
for(; ch > '9' || ch < '0'; ch = getchar()) if(ch == '-') w = -1;
for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
return x * w;
}
const int maxn = 55505;
struct node{
int to, nxt, w;
}edge[maxn << 1];
int n;
int head[maxn], tot;
int ans[maxn];
inline void add(int x, int y){
edge[++tot].to = y;
edge[tot].nxt = head[x];
// edge[tot].w = z;
head[x] = tot;
}
int siz[maxn];
int dp[maxn];
int dep[maxn];
inline void dfs(int u,int fa){
siz[u]=1;
dp[u]=dep[u];
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa)continue;
dep[v]=dep[u]+1;
dfs(v,u);
siz[u]+=siz[v];
dp[u]+=dp[v];
}
}
inline void calc(int u,int fa){
for(int i=head[u];i;i=edge[i].nxt){
int v=edge[i].to;
if(v==fa)continue;
dp[v]=dp[u]-siz[v]+n-siz[v];
calc(v,u);
}
}
signed main(){
scanf("%d",&n);
for(int i=1;i<n;i++){
int a = read(), b = read();
add(a,b);
add(b,a);
}
dfs(1,0);
calc(1,0);
int ans=0;
for(int i=1;i<=n;i++)
if(dp[ans]<dp[i])ans=i;
printf("%d\n",ans);
}
STA树的深度(树型DP)的更多相关文章
- ZOJ 3949 (17th 浙大校赛 B题,树型DP)
题目链接 The 17th Zhejiang University Programming Contest Problem B 题意 给定一棵树,现在要加一条连接$1$(根结点)和$x$的边,求加 ...
- BZOJ 1564 :[NOI2009]二叉查找树(树型DP)
二叉查找树 [题目描述] 已知一棵特殊的二叉查找树.根据定义,该二叉查找树中每个结点的数据值都比它左儿子结点的数据值大,而比它右儿子结点的数据值小. 另一方面,这棵查找树中每个结点都有一个权值,每个结 ...
- POJ3659 Cell Phone Network(树上最小支配集:树型DP)
题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...
- POJ 3342 - Party at Hali-Bula 树型DP+最优解唯一性判断
好久没写树型dp了...以前都是先找到叶子节点.用队列维护来做的...这次学着vector动态数组+DFS回朔的方法..感觉思路更加的清晰... 关于题目的第一问...能邀请到的最多人数..so ea ...
- 【XSY1905】【XSY2761】新访问计划 二分 树型DP
题目描述 给你一棵树,你要从\(1\)号点出发,经过这棵树的每条边至少一次,最后回到\(1\)号点,经过一条边要花费\(w_i\)的时间. 你还可以乘车,从一个点取另一个点,需要花费\(c\)的时间. ...
- 洛谷P3354 Riv河流 [IOI2005] 树型dp
正解:树型dp 解题报告: 传送门! 简要题意:有棵树,每个节点有个权值w,要求选k个节点,最大化∑dis*w,其中如果某个节点到根的路径上选了别的节点,dis指的是到达那个节点的距离 首先这个一看就 ...
- 【POJ 3140】 Contestants Division(树型dp)
id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS Memory Limit: 65536K Tot ...
- Codeforces 581F Zublicanes and Mumocrates(树型DP)
题目链接 Round 322 Problem F 题意 给定一棵树,保证叶子结点个数为$2$(也就是度数为$1$的结点),现在要把所有的点染色(黑或白) 要求一半叶子结点的颜色为白,一半叶子结点的 ...
- Codeforces 149D Coloring Brackets(树型DP)
题目链接 Coloring Brackets 考虑树型DP.(我参考了Q巨的代码还是略不理解……) 首先在序列的最外面加一对括号.预处理出DFS树. 每个点有9中状态.假设0位不涂色,1为涂红色,2为 ...
随机推荐
- 性能测试中TPS上不去的原因
TPS(Transaction Per Second):每秒事务数,指服务器在单位时间内(秒)可以处理的事务数量,一般以request/second为单位. 压测中为什么TPS上不去的原因: .网络带 ...
- Myeclipse 2014 破解补丁以及Y2课件迅雷下载
一. 在破解myeclipse2014之前,要先把环境变量配置好: 1)打开我的电脑--属性--高级--环境变量2)新建系统变量JAVA_HOME 和CLASSPATH 变量名:JAVA_HOME 变 ...
- 09.Django-数据库优化
Django查询数据库性能优化 现在有一张记录用户信息的UserInfo数据表,表中记录了10个用户的姓名,呢称,年龄,工作等信息. models文件 from django.db import mo ...
- win32 socket http 操作
纯wininet 操作http关键代码如下: HINTERNET hNet = ::InternetOpen(_T("Test"), INTERNET_OPEN_TYPE_DIRE ...
- x memory pool c语言 内存池
#ifndef X_MEMORY_H #define X_MEMORY_H #include <stdlib.h> #include <stdio.h> #include &l ...
- Mybatis详解(二) sqlsession的创建过程
我们处于的位置 我们要清楚现在的情况. 现在我们已经调用了SqlSessionFactoryBuilder的build方法生成了SqlSessionFactory 对象. 但是如标题所说,要想生成sq ...
- Windows下C,C++开发环境搭建指南
Windows下C,C++开发环境搭建指南 前情提要 基于近一段时间很多网友发邮件反馈,说一些项目编译出现问题,诸如此类的情况. 就觉得很有必要写一篇C,C++开发环境的小指南,统一回复. 1.君欲善 ...
- DML_Data Modification_DELETE
DML_Data Modification_Delete删除记录比较简单,但是需要特别注意,一不小心,就变成了 “从删库到跑路“ 就掉的大了 /* Microsoft SQL Server 2008 ...
- Redis源码阅读一:简单动态字符串SDS
源码阅读基于Redis4.0.9 SDS介绍 redis 127.0.0.1:6379> SET dbname redis OK redis 127.0.0.1:6379> GET dbn ...
- READSJC.md
这个作业属于哪个课程 软件工程 这个作业要求在哪里 点我 这个作业的目标 介绍自己 作业正文 往下看啦 其他参考文献 空空如也 介绍自己: 我是综合实验班的孙劼成. 天天宅在家里实在是太无聊了,就背背 ...