语言模型 Language Model (LM)
定义
什么是语言模型,通俗的讲就是从语法上判断一句话是否通顺。即判断如下的概率成立:
\]
链式法则(chain rule)
\]
Markov assumption
Markov assumption(first order)
\]
Markov assumption(second order)
\]
N-gram语言模型
我们基于上述的Markov assumption将n=1、n=2、n=3等模型进行说明
Unigram
n=1的情况下,是相对于first order markov assumption情况更简单的语言模型,其假设各个词之间时相互独立的,如下示:
\]
Bigram
n=2的情况下,即是Bigram语言模型,其来源于first order markov assumption,其考虑了词与词之间的先后顺序,如下所示:
\]
trigram
n=3的情况下,即是Trigram语言模型,其来源于second order markov assumption,其考虑了当前词与其前面两个词的先后顺序关系,如下所示:
\]
基于上述情况,常用的也就是Bigram,Trigram相对计算复杂结果更准确,n>3的情况下目前相对较少。
如何训练语言模型
上述我们说明了n=1、2、3等情况下的语言模型,那如何训练计算中的各个单词的概率值呢?
一般情况下,我们是通过给定的训练语料经过分词后,统计各个词出现的频率(或者条件频率)进行计算的,即在Unigram语言模型中,我们计算单个词的概率,是拿该词出现的次数除以整个训练语料中词的个数;在Bigram语言模型中,计算 \(p(w_i|w_{i-1})\) 的值,则需要先计算 \(w_{i-1}\) 这个词出现的次数 \(C(w_{i-1})\) ,而后计算 \(w_{i-1}\) 词后出现 \(w_i\) 这个词的数目 \(C(w_i|w_{i-1})\) ,则
\]
Trigram的计算过程和上述基本一致,这里不再进行说明。
如何评估语言模型
perplexity
基本思想是,给测试集的句子赋予较高概率值的语言模型较好,当语言模型训练完之后,测试集中的句子都是正常的句子,那么训练好的模型就是在测试集上的概率越高越好。表达式为:
\]
上式中 \(logp(w_i)\) 是我们在测试集中计算各个单词的概率,比如Unigram即是单个词的概率,Bigram即是 \(p(w_i|w_{i-1})\) 的概率,依次类推。
smoothing
在计算各个概率的过程中,受限于语料集的问题,并不能涵盖所有的词,如果不做smoothing平滑的话,会导致某些词的概率为0,这种情况下不管其他词概率为多少,计算的结果均为0,这种情况违背了我们的初衷。解决此问题的方式是增加平滑项。
- Add-one smoothing
- Add-k smoothing
- Interpolation
- Good-turning smoothing
Add-one smoothing
计算公式如下所示:
\]
其中V是词库大小
Add-k smoothing
计算公式如下所示:
\]
Interpolation
Interpolation综合Unigram、Bigram、Thrigram等方法进行平滑
\]
其中 \(\lambda_1 + \lambda_2 + \lambda_3 = 1\)
Good-turning smoothing
其主要思想是从概率的总量中分配少量的比例给零概率项。
假定给定的语料库中出现\(r\) 次数的词有 \(N_r\) 个,则有
\]
当\(r\) 较小时,我们使用 \(d_r\) 代替 \(r\) ,这里 \(d_r < r\) , \(d_r\) 的值可有下式表示
\]
其期望可以表示为
\]
其中\(N\) 为现有语料库中所有单词频数的总和,这样可以保证
\]
一般情况下,发生次数为\(r\) 的词个数大于发生次数为 \(r\) +1的词个数, \(r\) 越大,词的数量 \(N_r\) 越小。通过Good-turning smooth可以让数据稀疏度有效的降低,所有词的概率估计会看起来很平滑。
语言模型 Language Model (LM)的更多相关文章
- 用CNTK搞深度学习 (二) 训练基于RNN的自然语言模型 ( language model )
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火 ...
- 线上学习-语言模型 language model
chain rule markov assumption 评估语言模型 平滑方法
- NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》
https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...
- Traditional Language Model
Traditional Language Model通常用于回答下述问题: How likely is a string of English words good English ? \(p_{LM ...
- A Neural Probabilistic Language Model
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabili ...
- (六) 语言模型 Language Madel 与 word2vec
语言模型简介(Language Model) 简单的说,语言模型 (Language Model) 是用来计算一个句子出现概率的模型,假设句子 ,其中 代表句子中的第 个词语,则语句 W 以该顺 ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
- #论文阅读# Universial language model fine-tuing for text classification
论文链接:https://aclweb.org/anthology/P18-1031 对文章内容的总结 文章研究了一些在general corous上pretrain LM,然后把得到的model t ...
随机推荐
- git的撤销、删除和版本回退
目录 备注: 知识点: 查看git仓库的状态 查看历史记录. 版本回退 备注: 本文参考于廖雪峰的博客Git教程.依照其博客进行学习和记录,感谢其无私分享,也欢迎各位查看原文. 知识点: 1.git ...
- Python 为什么只需一条语句“a,b=b,a”,就能直接交换两个变量?
从接触 Python 时起,我就觉得 Python 的元组解包(unpacking)挺有意思,非常简洁好用. 最显而易见的例子就是多重赋值,即在一条语句中同时给多个变量赋值: >>> ...
- P5198 [USACO19JAN]Icy Perimeter S (洛谷) (水搜索)
同样是因为洛谷作业不会写…… 写(水)博客啦. 直接放题目吧,感觉放在代码框里好看点 Farmer John要开始他的冰激凌生意了!他制造了一台可以生产冰激凌球的机器,然而不幸的是形状不太规则,所以他 ...
- 搭建kubernetes集群
什么是Kubernetes? Kubernetes(k8s)是自动化容器操作的开源平台,这些操作包括部署,调度和节点集群间扩展.如果你曾经用过Docker容器技术部署容器,那么可以将Docker看成K ...
- 附001.Nginx location语法规则
一 location规则 1.1 location语法 基本语法: location [=|~|~*|^~]/uri/{...} 修饰符释义: 1 = #表示精确严格匹配,只有请求的url路径与后面的 ...
- mysql中的DDL,DML,DQL,DCL
SQL语言一共分为4大类:数据定义语言DDL,数据操纵语言DML,数据查询语言DQL,数据控制语言DCL 1.数据定义语言DDL(Data Definition Language) 对象: 数据库和表 ...
- LQB20180航班时间(sscanf)
首先找找规律,两者相加除以二. 按格式读入sscanf 按格式输出printf("02d%",m);前导0 #include <iostream> #include & ...
- 远光武汉研发中心区块链事业部Java面试总结
面试在约定的时间准时进行,也是采用腾讯会议远程面试的方式.但是这是我第一次遇到面试官未打开摄像头的情况,后面经过沟通,双方都打开摄像头进行交流. 之前了解这个岗位主要是区块链相关的Java开发,所以事 ...
- SpringBoot学习之整合Druid的简单应用
一.Druid介绍 Druid简介 Druid是目前Java语言中最好的数据库连接池之一.结合了 C3P0.DBCP 等 DB 池的优点,同时加入了日志监控.Druid 是一个分布式的.支持实时多维 ...
- PHP simplexml_load_string() 函数
实例 转换形式良好的 XML 字符串为 SimpleXMLElement 对象,然后输出对象的键和元素: <?php$note=<<<XML<note>高佣联盟 w ...