题目大意:

给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数:

首先定义一个幸运数字:只由4和7构成

对于排列p[i]满足i和p[i]都是幸运数字

思路:

对于n,k<=1e9

一眼逆康托展开

什么?你不知到康托展开?

点这里点这里点这里

由于阶乘的增长是非常快的

13的阶乘就大于1e9了

所以说:

对于一个n的权排列 1  2 3 4 ...... n

我们最多动他的后13位就可以得到第k小的排列

我们称之为动n的后x位可以得到第k小的排列(如果这里都取13的话,有的序列是n<13的,会越界)

然后我们对[1,n-x]中的数字统计答案的时候可以数位dp,可以dfs

然后对后x位统计答案,就是裸的逆康托展开了

Code:

ll n, k, x, fac[20], ans;
std::vector<ll> v;
ll suf[20], cnt;
void dfs(ll num, ll top)
{
// cout<<top<<endl;
if(num > top) return ;
if(num <= top && num != 0)ans++;
dfs(num * 10 + 4, top);
dfs(num * 10 + 7, top);
}
int ok(ll x)
{
int flag = 1;
while(x)
{
int yy = x % 10;
// cout<<yy<<"@"<<endl;
if(yy != 4 && yy != 7) flag = 0;
x /= 10;
}
return flag;
}
void re_count()
{
sort(v.begin(), v.end());
for(int i = x ; i >= 1 ; i--)
{
ll pos = k / fac[i - 1];
k = k % fac[i - 1];
suf[++cnt] = v[pos];
v.erase(v.begin() + pos);
} }
int main()
{
fac[0] = 1;
rep(i, 1, 16) fac[i] = i * fac[i - 1];
n = read(), k = read();
k--;
for(int i = 1 ; i <= 16; i++)
{
if(fac[i] >k)
{
x = i;
break;
}
}
// cout<<x<<"#"<<endl;
for(int i = n; i >= n - x + 1; i--) v.push_back(i);
if(n - x < 0)
{
cout << -1;
return 0;
}
dfs(0, n - x); //搜出n-x的幸运数
re_count();
for(int i = n - x + 1; i <= n; i++) if(ok(i) && ok(suf[i - (n - x)])) ans++;
out(ans);
return 0;
}

Codeforces-121C(逆康托展开)的更多相关文章

  1. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  2. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  3. 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)

    描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...

  4. HDU1027 Ignatius and the Princess II( 逆康托展开 )

    链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...

  5. 康托展开&逆康托展开学习笔记

    啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...

  6. hdoj 1027 Ignatius and the Princess II 【逆康托展开】

    Ignatius and the Princess II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K ( ...

  7. 康托展开与逆康托展开模板(O(n^2)/O(nlogn))

    O(n2)方法: namespace Cantor { ; int fac[N]; void init() { fac[]=; ; i<N; ++i)fac[i]=fac[i-]*i; } in ...

  8. DeCantor Expansion (逆康托展开)

    Background\text{Background}Background The \text{The }The Listen&Say Test will be hold on May 11, ...

  9. cf121C. Lucky Permutation(康托展开)

    题意 题目链接 Sol 由于阶乘的数量增长非常迅速,而\(k\)又非常小,那么显然最后的序列只有最后几位会发生改变. 前面的位置都是\(i = a[i]\).那么前面的可以直接数位dp/爆搜,后面的部 ...

随机推荐

  1. SVG image tag

    SVG image tag https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/SVG_Image_Tag <?xml versi ...

  2. Serverless & Cloudflare Workers

    Serverless & Cloudflare Workers https://dash.cloudflare.com/6f3d5e68ab80892a372313b7c9b02a85/wor ...

  3. 「NGK每日快讯」2021.2.11日NGK公链第100期官方快讯!

  4. 应该如何看待VAST的未来价格与价值?

    提起数字货币的价格,很多币圈人士都是滔滔不绝,随口一举例,便是百倍千倍的数字货币.可是提起数字货币的价值,就很少有币圈人士能举出几个有力的例子,常常顾左右而言他,场面十分尴尬.之所以会这样,是因为很多 ...

  5. DisplayFormat属性

    DataFormatString="{0:格式字符串}" 在DataFormatString 中的 {0} 表示数据本身,而在冒号后面的格式字符串代表所们希望数据显示的格式: 数字 ...

  6. HTML认知

    <!DOCTYPE html>的作用 1.定义 DOCTYPE是一种标准通用标记语言的文档类型的声明,目的是告诉标准通用标记语言解析器,该用什么方式解析这个文档. <!DOCTYPE ...

  7. python使用requests模块下载文件并获取进度提示

    一.概述 使用python3写了一个获取某网站文件的小脚本,使用了requests模块的get方法得到内容,然后通过文件读写的方式保存到硬盘同时需要实现下载进度的显示 二.代码实现 安装模块 pip3 ...

  8. Java数组练习(打印杨辉数组)

    打印杨辉数组 package com.kangkang.array; import java.util.Scanner; public class demo02 { public static voi ...

  9. 后端程序员之路 37、Akka、Actor、Scala初窥

    Akkahttp://akka.io/ Akka 是一个用 Scala 编写的库,用于简化编写容错的.高可伸缩性的 Java 和 Scala 的 Actor 模型应用,是一个广泛运用的分布式应用框架. ...

  10. 力扣496. 下一个更大元素 I

    原题 1 class Solution: 2 def nextGreaterElement(self, nums1: List[int], nums2: List[int]) -> List[i ...