我们知道IO模型中有一个NIO模型,像我们平时接触到的dubbo类的RPC框架底层基于Netty作为通讯框架,而Netty实现的IO模型就是NIO模型。而NIO模型中 底层技术就用到了Linux的epoll,当然早起版本是select,这篇文章通过生活中等快递的比喻故事比较形象、生动的阐述了IO多路复用的原理、本质。

首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象。


不管是文件,还是套接字,还是管道,我们都可以把他们看作流。

之后我们来讨论I/O的操作,通过read,我们可以从流中读入数据;通过write,我们可以往流写入数据。现在假定一个情形,我们需要从流中读数据,但是流中还没有数据(典型的例子为,客户端要从socket读如数据,但是服务器还没有把数据传回来),这时候该怎么办?

· 
阻塞。阻塞是个什么概念呢?比如某个时候你在等快递,但是不知道快递什么时候过来,而且你没有别的事可以干(或者说接下来的事要等快递来了才能做);那么你可以去睡觉了,因为你知道快递把货送来时一定会给你打个电话(假定一定能叫醒你)。

· 
非阻塞忙轮询。接着上面等快递的例子,如果用忙轮询的方法,那么你需要知道快递员的手机号,然后每分钟给他挂个电话:“你到了没?”

很明显一般人不会用第二种做法,不仅显很无脑,浪费话费不说,还占用了快递员大量的时间。

大部分程序也不会用第二种做法,因为第一种方法经济而简单,经济是指消耗很少的CPU时间,如果线程睡眠了,就掉出了系统的调度队列,暂时不会去瓜分CPU宝贵的时间片了。

为了了解阻塞是如何进行的,我们来讨论缓冲区,以及内核缓冲区,最终把I/O事件解释清楚。缓冲区的引入是为了减少频繁I/O操作而引起频繁的系统调用(你知道它很慢的),当你操作一个流时,更多的是以缓冲区为单位进行操作,这是相对于用户空间而言。对于内核来说,也需要缓冲区。

假设有一个管道,进程A为管道的写入方,B为管道的读出方。

1. 
假设一开始内核缓冲区是空的,B作为读出方,被阻塞着。然后首先A往管道写入,这时候内核缓冲区由空的状态变到非空状态,内核就会产生一个事件告诉B该醒来了,这个事件姑且称之为“缓冲区非空”。

2. 
但是“缓冲区非空”事件通知B后,B却还没有读出数据;且内核许诺了不能把写入管道中的数据丢掉, 这个时候A写入的数据会滞留在内核缓冲区中,如果内核缓冲区满了,B仍未开始读数据,最终内核缓冲区会被填满,这个时候会产生一个I/O事件,告诉进程A,你该等等(阻塞)了,我们把这个事件定义为“缓冲区满”。

3. 
假设后来B终于开始读数据了,于是内核的缓冲区空了出来,这时候内核会告诉A,内核缓冲区有空位了,你可以从长眠中醒来,继续写数据了,我们把这个事件叫做“缓冲区非满”

4. 
也许事件Y1已经通知了A,但是A也没有数据要写入,而B继续读出数据,知道内核缓冲区空了。这个时候内核就告诉B,你需要阻塞了!,我们把这个时间定为“缓冲区空”。

这四个情形涵盖了四个I/O事件,缓冲区满,缓冲区空,缓冲区非空,缓冲区非满(注意都是说的内核缓冲区,且这四个术语都是我生造的,仅为解释其原理而造)。这四个I/O事件是进行阻塞同步的根本。(如果不能理解“同步”是什么概念,请学习操作系统的锁,信号量,条件变量等任务同步方面的相关知识)。

然后我们来说说阻塞I/O的缺点。但是阻塞I/O模式下,一个线程只能处理一个流的I/O事件。如果想要同时处理多个流,要么多进程(fork),要么多线程(pthread_create),很不幸这两种方法效率都不高。

于是再来考虑非阻塞忙轮询的I/O方式,我们发现我们可以同时处理多个流了(把一个流从阻塞模式切换到非阻塞模式在此不予讨论):

while true {

for i in stream[]

{

if i has data

read until unavailable

}

}

我们只要不停的把所有流从头到尾问一遍,又从头开始。这样就可以处理多个流了,但这样的做法显然不好,因为如果所有的流都没有数据,那么只会白白浪费CPU。这里要补充一点,阻塞模式下,内核对于I/O事件的处理是阻塞或者唤醒,而非阻塞模式下则把I/O事件交给其他对象(后文介绍的select以及epoll)处理甚至直接忽略。

为了避免CPU空转,可以引进了一个代理(一开始有一位叫做select的代理,后来又有一位叫做poll的代理,不过两者的本质是一样的)。这个代理比较厉害,可以同时观察许多流的I/O事件,在空闲的时候,会把当前线程阻塞掉,当有一个或多个流有I/O事件时,就从阻塞态中醒来,于是我们的程序就会轮询一遍所有的流(于是我们可以把“忙”字去掉了)。代码长这样:

while true {

select(streams[])

for i in streams[] {

if i hasdata

read until unavailable

}

}

于是,如果没有I/O事件产生,我们的程序就会阻塞在select处。但是依然有个问题,我们从select那里仅仅知道了,有I/O事件发生,但却并不知道是哪几个流(可能有一个,多个,甚至全部),我们只能无差别轮询所有流,找出能读出数据,或者写入数据的流,对他们进行操作。

但是使用select,我们有O(n)的无差别轮询复杂度,同时处理的流越多,每一次无差别轮询时间就越长。

说了这么多,终于能好好解释epoll了

epoll可以理解为event poll,不同于忙轮询和无差别轮询,epoll之会把哪个流发生了怎样的I/O事件通知我们。此时我们对这些流的操作都是有意义的。(复杂度降低到了O(k),k为产生I/O事件的流的个数,也有认为O(1)的[更新 1])

在讨论epoll的实现细节之前,先把epoll的相关操作列出[更新 2]:

· 
epoll_create 创建一个epoll对象,一般epollfd = epoll_create()

· 
epoll_ctl (epoll_add/epoll_del的合体),往epoll对象中增加/删除某一个流的某一个事件

比如

epoll_ctl(epollfd, EPOLL_CTL_ADD, socket, EPOLLIN);//有缓冲区内有数据时epoll_wait返回

epoll_ctl(epollfd, EPOLL_CTL_DEL, socket, EPOLLOUT);//缓冲区可写入时epoll_wait返回

· 
epoll_wait(epollfd,...)等待直到注册的事件发生

(注:当对一个非阻塞流的读写发生缓冲区满或缓冲区空,write/read会返回-1,并设置errno=EAGAIN。而epoll只关心缓冲区非满和缓冲区非空事件)。

一个epoll模式的代码大概的样子是:

while true {

active_stream[] = epoll_wait(epollfd)

for i in active_stream[] {

read or write untill unavailable

}

}

限于篇幅,我只说这么多,以揭示原理性的东西,至于epoll的使用细节,请参考man和google,实现细节,请参阅linux kernel source。

摘自https://www.zhihu.com/question/20122137/answer/14049112

epoll原理与本质的更多相关文章

  1. select/poll/epoll原理探究及总结

    select,poll,epoll都是IO多路复用的机制.I/O多路复用就通过一种机制,可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作.但select ...

  2. atitit.软件与sql设计模式原理与本质 大总结attialx总结v6 qc26.docx

    atitit.软件与sql设计模式原理与本质 大总结attialx总结v6 qc26.docx 1.1. 版本历史2 2. 设计模式是什么2 2.1. 模式就是在一种场合下对某个问题的一个解决方案.& ...

  3. Atitit paip.对象方法的实现原理与本质.txt

    Atitit paip.对象方法的实现原理与本质.txt 对象方法是如何实现的1 数组,对象,字典1 对象方法是如何实现的 这显然是一个对象方法调用.但对象方法是如何实现的呢?在静态语言中,因为有编译 ...

  4. paip.日志中文编码原理问题本质解决python

    paip.日志中文编码原理问题本质解决python 默认的python日志编码仅仅gbk...保存utf8字符错误..输出到个eric5的控制台十默认好像十unicode的,要是有没显示出来的字符,大 ...

  5. Atitit 函数调用的原理与本质attilax总结 stdcall cdecl区别

    Atitit 函数调用的原理与本质attilax总结 stdcall cdecl区别 通常来说函数调用要用到的两条基本的指令:”CALL”指令和”RET”指令.”CALL”指令将当前的指令指针(这个指 ...

  6. epoll 原理

    本文转载自epoll 原理 导语 以前经常被人问道 select.poll.epoll 的区别,基本都是靠死记硬背的,最近正好复习 linux 相关的内容,就把这一块做个笔记吧,以后也能方便查阅. e ...

  7. epoll原理详解及epoll反应堆模型

    本文转载自epoll原理详解及epoll反应堆模型 导语 设想一个场景:有100万用户同时与一个进程保持着TCP连接,而每一时刻只有几十个或几百个TCP连接是活跃的(接收TCP包),也就是说在每一时刻 ...

  8. epoll原理解释(转)

    转自:http://yaocoder.blog.51cto.com/2668309/888374   首先我们来定义流的概念,一个流可以是文件,socket,pipe等等可以进行I/O操作的内核对象. ...

  9. EPOLL原理详解(图文并茂)

    文章核心思想是: 要清晰明白EPOLL为什么性能好. 本文会从网卡接收数据的流程讲起,串联起CPU中断.操作系统进程调度等知识:再一步步分析阻塞接收数据.select到epoll的进化过程:最后探究e ...

随机推荐

  1. CAD插件

    CAD插件使用: 1.首先得有插件,插件解压,放那个盘都可以,只要自己觉得放得下,注:(每次打开CAD想要用插件都要的步骤)打开CAD---AP回车----找到插件所在文件夹-------Ctrl+A ...

  2. 题解-洛谷P6788 「EZEC-3」四月樱花

    题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y ...

  3. 戴尔iDRAC+Ubuntu 18.04系统安装

    Ubuntu镜像下载链接:http://mirrors.aliyun.com/ubuntu-releases/18.04/ 1.登录戴尔管理口 2.点击虚拟控制台 3.选择镜像 4.挂载镜像 5.选择 ...

  4. DjangoRestFramework使用

    目录: 1.1 DjangoRestFramework基本使用 1.2 drf认证&权限 模块 1.3 djangorestframework 序列化 1.4 djangorestframew ...

  5. sqli-labs less13-20(各种post型头部注入)

    less-13 POST型双查询注入 less-14 POST型双查询注入 less-15 POST型布尔注入 less-16 POST型布尔注入 less-17 POST型报错注入(updatexm ...

  6. github内的一些操作

    github远程仓库的克隆操作 1,找到你想要克隆的地址,复制下来 2,切入到git所在目录下,输入 git clone 复制的地址 设置过滤文件不纳入git管理 1,在git目录下创建一个.giti ...

  7. I/O-外部设备

    目录 输入设备 输出设备 显示器 阴极射线管(CRT)显示器 字符显示器 图形显示器 图像显示器 打印机 小结 外存储器 磁盘存储器 磁盘设备的组成 存储区域 硬盘存储器 磁盘的性能指标 磁盘地址 硬 ...

  8. 第七周jieba分词

    import jieba txt = open("聊斋志异简写版.txt", "r", encoding='utf-8').read() words = jie ...

  9. MetaException(message:Could not connect to meta store using any of the URIs provided. Most recent failure: org.apache.thrift.transport.TTransportException: java.net.ConnectException: 拒绝连接 (Connection

    hive在hive-site.xml中配置hive.metastore.uris属性,后启动异常 hive异常 [fan@master hive-0.13.1-cdh5.3.6]$ bin/hive ...

  10. element Cascader 多选 点击文字选中

    html 部分 1 <el-form-item label="A部署位置" > 2 <el-cascader 3 v-model="itemType.a ...