BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)
这道题只要读懂题目一切好说.
给出nnn个点的一棵树,每一个点有一个费用vvv和一个领导力aaa,给出费用上限mmm.求下面这个式子的最大值ax∗∣S∣ ( S⊂x的子树, ∑iv[i]≤m )\large a_x*|S|\ (\ S\sub x的子树,\ \sum_{i}v[i]\le m\ )ax∗∣S∣ ( S⊂x的子树, i∑v[i]≤m )
然后就做一遍dfsdfsdfs,对于一个点维护子树内的所有数的大根堆,如果当前堆的和大于mmm,就把堆顶元素弹出知道小于等于mmm.那么这样一定是最优的,因为子树内每个点在贡献上平等,费用大的就要优先弹出.
然后每个点就把子树的堆合并起来就行了.这里用左偏树实现
CODE
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 100005;
typedef long long LL;
struct lt {
int ls, rs, v, d, sz; LL sum;
}t[MAXN];
vector<int>e[MAXN];
int n, m; LL a[MAXN], ans;
inline void upd(int x) {
if(t[t[x].ls].d < t[t[x].rs].d) swap(t[x].ls, t[x].rs);
t[x].d = t[t[x].rs].d + 1;
t[x].sz = t[t[x].ls].sz + t[t[x].rs].sz + 1;
t[x].sum = t[t[x].ls].sum + t[t[x].rs].sum + t[x].v;
}
int merge(int x, int y) {
if(!x || !y) return x + y;
if(t[y].v > t[x].v) swap(x, y);
t[x].rs = merge(t[x].rs, y);
upd(x);
return x;
}
inline int pop(int x) {
int l = t[x].ls, r = t[x].rs;
t[x].ls = t[x].rs = t[x].d = 0; t[x].sz = 1;
return merge(l, r);
}
inline int dfs(int x, int ff) {
int rt = x;
t[x].d = 0; t[x].sz = 1, t[x].sum = t[x].v;
for(int v, i = 0, siz = e[x].size(); i < siz; ++i)
if((v=e[x][i]) != ff) rt = merge(rt, dfs(v, x));
while(t[rt].sum > m) rt = pop(rt);
ans = max(ans, a[x] * t[rt].sz);
return rt;
}
int main () {
t[0].d = -1; t[0].sz = t[0].sum = 0;
scanf("%d%d", &n, &m);
for(int i = 1, x; i <= n; ++i) {
scanf("%d%d%lld", &x, &t[i].v, &a[i]);
if(x) e[x].push_back(i);
}
dfs(1, 0);
printf("%lld\n", ans);
}
BZOJ 2809: [Apio2012]dispatching(可并堆 左偏树板题)的更多相关文章
- 2809: [Apio2012]dispatching 可并堆 左偏树
https://www.lydsy.com/JudgeOnline/problem.php?id=2809 板子题wa了一下因为输出ans没有lld #include<iostream> ...
- bzoj 2809: [Apio2012]dispatching -- 可并堆
2809: [Apio2012]dispatching Time Limit: 10 Sec Memory Limit: 128 MB Description 在一个忍者的帮派里,一些忍者们被选中派 ...
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
- 【BZOJ 1455】 1455: 罗马游戏 (可并堆-左偏树+并查集)
1455: 罗马游戏 Description 罗马皇帝很喜欢玩杀人游戏. 他的军队里面有n个人,每个人都是一个独立的团.最近举行了一次平面几何测试,每个人都得到了一个分数. 皇帝很喜欢平面几何,他对那 ...
- BZOJ 4003 / Luogu P3261 [JLOI2015]城池攻占 (左偏树)
左偏树裸题,在树上合并儿子传上来的堆,然后小于当前结点防御值的就pop掉,pop的时候统计答案. 修改的话就像平衡树一样打懒标记就行了. 具体见代码 CODE #include<bits/std ...
- BZOJ 2809 APIO2012 dispatching Treap+启示式合并 / 可并堆
题目大意:给定一棵树,选定一棵子树中的一些点,薪水和不能超过m,求点的数量*子树根节点的领导能力的最大值 考虑对于每一个节点,我们维护一种数据结构,在当中贪心寻找薪金小的雇佣. 每一个节点暴力重建一定 ...
- BZOJ 2809: [Apio2012]dispatching [斜堆]
题意:主席树做法见上一题 我曾发过誓再也不写左偏树(期末考试前一天下午5个小时没写出棘手的操作) 于是我来写斜堆啦 从叶子往根合并,维护斜堆就行了 题目连拓扑序都给你了... 说一下斜堆的操作: 合并 ...
- BZOJ 2809: [Apio2012]dispatching(左偏树)
http://www.lydsy.com/JudgeOnline/problem.php?id=2809 题意: 思路:最简单的想法就是枚举管理者,在其子树中从薪水低的开始选起,但是每个节点都这样处理 ...
- BZOJ 2809: [Apio2012]dispatching( 平衡树 + 启发式合并 )
枚举树上的每个结点做管理者, 贪心地取其子树中薪水较低的, 算出这个结点为管理者的满意度, 更新答案. 用平衡树+启发式合并, 时间复杂度为O(N log²N) ------------------- ...
随机推荐
- springboot获取项目的绝对路径和根目录
springboot获取当前项目路径的地址 System.getProperty("user.dir") 输出目录: G:\outshine\wangsoso //获取class ...
- python列表和if语句的简单结合
将列表所有元素打印出来 cars = ['toyota', 'honda', 'mazda', 'nissan', 'mitsubishi', 'subaru', 'suzuki', 'isuzu'] ...
- sqarkSQL hiveSql
查看数据库 show databases; 进入数据库 use 库名 查看表 show tables: select * from 表名 hdfs传输spark sql查询 hive找到指定路径sql ...
- 浅谈CSRF(Cross-site request forgery)跨站请求伪造
目录 浅谈CSRF(Cross-site request forgery)跨站请求伪造 CSRF是什么 CSRF攻击原理 CSRF攻击防范 浅谈CSRF(Cross-site request forg ...
- python---博客分类目录
python基础 python函数 python模块 python面向对象 网络编程 并发编程 数据库 前端学习 HTML基础 CSS基础 JavaScript基础 js操作BOM和DOM jQuer ...
- http请求之of_ordering_http_post
//Public function of_ordering_http_post (string as_vipsj,string as_url) returns string //string as_v ...
- 并不对劲的复健训练-p3674
题目大意 给出序列$ a_1,...,a_n $ ( $ n\leq10^5,a\leq 10^5 $ ),有\(m\) ( \(m\leq 10^5\))个以下三类询问: (1)给出\(l,r,k\ ...
- Hive SQL查询效率提升之Analyze方案的实施
0.简介 Analyze,分析表(也称为计算统计信息)是一种内置的Hive操作,可以执行该操作来收集表上的元数据信息.这可以极大的改善表上的查询时间,因为它收集构成表中数据的行计数,文件计数和文件大小 ...
- python与pip
python , pip 相关命令汇总 1) 在python3 下升级pip3 pip3 install --upgrade pip
- phpcms修改重置后台账号和密码
通过Phpmyadmin等工具,打开数据库中找到v9_admin表: 把password字段值改为: 0b817b72c5e28b61b32ab813fd1ebd7f再把encrypt字段值改为: 3 ...