G - Gang Up

思路:

每个点按时间拆点建边,然后跑最小费用流

一次走的人不能太多,假设每次走的人为k

(k*k-(k-1)*(k-1))*d <= c+d

k <= 24

代码:

#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head int n, m, k, c, d, a[], x, y;
const int N = + ;
const int INF = 0x3f3f3f3f;
struct edge {
int to, cap, cost, rev;
};
int V;
vector<edge>g[N];
int h[N], dis[N], prevv[N], preve[N];
void add_edge(int u, int v, int cap, int cost) {
g[u].pb({v, cap, cost, g[v].size()});
g[v].pb({u, , -cost, g[u].size()-});
}
int min_cost_flow(int s, int t, int f) {
int res = ;
mem(h, );
while(f > ) {
priority_queue<pii, vector<pii>, greater<pii> > q;
mem(dis, 0x3f);
dis[s] = ;
q.push({, s});
while(!q.empty()) {
pii p = q.top();
q.pop();
int v = p.se;
if(dis[v] < p.fi) continue;
for (int i = ; i < g[v].size(); ++i) {
edge &e = g[v][i];
if(e.cap > && dis[e.to] > dis[v] + e.cost + h[v] - h[e.to]) {
dis[e.to] = dis[v] + e.cost + h[v] - h[e.to];
prevv[e.to] = v;
preve[e.to] = i;
q.push({dis[e.to], e.to});
}
}
}
if(dis[t] == INF) return -;
for (int v = ; v < V; ++v) h[v] += dis[v];
int d = f;
for (int v = t; v != s; v = prevv[v]) d = min(d, g[prevv[v]][preve[v]].cap);
f -= d;
res += d*h[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = g[prevv[v]][preve[v]];
e.cap -= d;
g[v][e.rev].cap += d;
}
}
return res;
}
int s, t;
int main() {
scanf("%d %d %d %d %d", &n, &m, &k, &c, &d);
for (int i = ; i <= k; ++i) scanf("%d", &a[i]);
s = , t = *n+;
for (int i = ; i <= k; ++i) add_edge(s, (a[i]-)*+, , );
for (int i = ; i <= ; ++i) add_edge(i, t, k, );
for (int i = ; i <= n; ++i) {
for (int j = ; j < ; ++j)
add_edge((i-)*+j, (i-)*+j+, k, c);
}
for (int i = ; i <= m; ++i) {
scanf("%d %d", &x, &y);
for (int j = ; j < ; ++j) {
for (int k = ; k <= ; ++k) {
add_edge((x-)*+j, (y-)*+j+, , (k*k-(k-)*(k-))*d+c);
add_edge((y-)*+j, (x-)*+j+, , (k*k-(k-)*(k-))*d+c);
}
}
}
V = *n+;
printf("%d\n", min_cost_flow(s, t, k));
return ;
}

Codeforces 1187 G - Gang Up的更多相关文章

  1. [codeforces 549]G. Happy Line

    [codeforces 549]G. Happy Line 试题描述 Do you like summer? Residents of Berland do. They especially love ...

  2. CodeForces 794 G.Replace All

    CodeForces 794 G.Replace All 解题思路 首先如果字符串 \(A, B\) 没有匹配,那么二元组 \((S, T)\) 合法的一个必要条件是存在正整数对 \((x,y)\), ...

  3. Codeforces 1207 G. Indie Album

    Codeforces 1207 G. Indie Album 解题思路 离线下来用SAM或者AC自动机就是一个单点加子树求和,套个树状数组就好了,因为这个题广义SAM不能存在 \(len[u] = l ...

  4. codeforces 659 G. Fence Divercity 组合数学 dp

    http://codeforces.com/problemset/problem/659/G 思路: f(i,0/1,0/1) 表示到了第i个,要被切的块开始了没有,结束了没有的状态的方案数 递推看代 ...

  5. Codeforces 803 G. Periodic RMQ Problem

    题目链接:http://codeforces.com/problemset/problem/803/G 大致就是线段树动态开节点. 然后考虑到如果一个点还没有出现过,那么这个点显然未被修改,就将这个点 ...

  6. Codeforces 954 G. Castle Defense

    http://codeforces.com/problemset/problem/954/G 二分答案 检验的时候,从前往后枚举,如果发现某个位置的防御力<二分的值,那么新加的位置肯定是越靠后越 ...

  7. Codeforces 746 G. New Roads

    题目链接:http://codeforces.com/contest/746/problem/G mamaya,不知道YY了一个什么做法就这样过去了啊 2333 首先我显然可以随便构造出一棵树满足他所 ...

  8. Codeforces 724 G Xor-matic Number of the Graph 线性基+DFS

    G. Xor-matic Number of the Graph http://codeforces.com/problemset/problem/724/G 题意:给你一张无向图.定义一个无序三元组 ...

  9. codeforces 626 G. Raffles(线段树+思维+贪心)

    题目链接:http://codeforces.com/contest/626/problem/G 题解:这题很明显买彩票肯定要买贡献最大的也就是说买p[i]*(num[i]+1)/(num[i]+a[ ...

随机推荐

  1. 基于mysqld_multi实现MySQL多实例配置

    环境: 操作系统  CentOS7.5(已安装MySQL) 主机名    localhost 本机安装路径为 /usr/local/mysql 实验初始配置:所有主机关闭防火墙与selinux [ro ...

  2. 【ARM-Linux开发】 uboot启动阶段修改启动参数方法及分析

    作者:围补 本来启动方式这节不是什么复杂的事儿,不过想简单的说清楚明白,还真是不知道怎么组织.毕竟文字跟有声语言表达有别.但愿简单的东西别让我讲的太复杂! Arm板系统文件一般有三个--bootloa ...

  3. 【编程开发】 C与C++中的关于函数指针的强制类型转换与指针函数的关系

    [编程开发] C与C++中的关于函数指针的强制类型转换与指针函数的关系 标签: [编程开发] [VS开发] 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 以 ...

  4. ztree点击节点实现选中/取消复选框

    效果 代码 在js中初始化tree时 设置复选框操作只影响子节点 复选框事件,想怎么处理就怎么处理

  5. 【模板】C++高精度加法

    所谓高精度加法就是对两个和可能会超过long long数据范围的数进行加法运算.这种情况下,显然不能使用常规的方法进行运算. 那么,不妨考虑一下人在纸上是如何进行加法运算的.当人进行加法运算时,通常会 ...

  6. NOIP 2018 提高组初赛试题 题目+答案+简要解析

    一.单项选择题(共 10  题,每题 2  分,共计 20  分: 每题有且仅有一个正确选项)       1. 下列四个不同进制的数中,与其它三项数值上不相等的是( ). A. (269) 16 B ...

  7. 作为小白该如何抉择python编辑器?

    刚开始接触编程,有一个好的编辑器上手,那学习起来肯定是事半功倍的!本篇就给大家介绍适合零基础小白学习Python的四种编辑器,希望大家受用! 1.Sublime Text: 这是一个轻量级的代码编辑器 ...

  8. Python二、十、八进制相互转换

    进制转换:先介绍用传统数学方法,再介绍用python内置方法 二进制转十进制: 1101 转为十进制 1*2^(4-1)+1*2^(3-1)+0*2^(2-1)+1*2^(1-1) 即各个位拆开,乘以 ...

  9. 编写函数实现strcmp( )函数功能

    strcmp(字符串1,字符串2) 作用是比较字符串1和字符串2.两个字符串从左至右逐个字符比较(按照字符的ASCII码值的大小)(即减法比较),直到字符不同或者遇见’\0’为止 如果全部字符都相同, ...

  10. 移动端APP测试概要

    APP测试点总结(全面) 一.功能性测试: ——根据产品需求文档编写测试用例. ——软件设计文档编写用例. 注意:就是根据产品需求文档编写测试用例而进行测试. 二.兼容性测试: ——android版本 ...