E - We Need More Bosses

CodeForces - 1000E

Your friend is developing a computer game. He has already decided how the game world should look like — it should consist of nn locations connected by mm two-waypassages. The passages are designed in such a way that it should be possible to get from any location to any other location.

Of course, some passages should be guarded by the monsters (if you just can go everywhere without any difficulties, then it's not fun, right?). Some crucial passages will be guarded by really fearsome monsters, requiring the hero to prepare for battle and designing his own tactics of defeating them (commonly these kinds of monsters are called bosses). And your friend wants you to help him place these bosses.

The game will start in location ss and end in location tt, but these locations are not chosen yet. After choosing these locations, your friend will place a boss in each passage such that it is impossible to get from ss to tt without using this passage. Your friend wants to place as much bosses as possible (because more challenges means more fun, right?), so he asks you to help him determine the maximum possible number of bosses, considering that any location can be chosen as ss or as tt.

Input

The first line contains two integers nn and mm (2≤n≤3⋅1052≤n≤3⋅105, n−1≤m≤3⋅105n−1≤m≤3⋅105) — the number of locations and passages, respectively.

Then mm lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y) describing the endpoints of one of the passages.

It is guaranteed that there is no pair of locations directly connected by two or more passages, and that any location is reachable from any other location.

Output

Print one integer — the maximum number of bosses your friend can place, considering all possible choices for ss and tt.

Examples

Input

5 51 22 33 14 15 2

Output

2

Input

4 31 24 33 2

Output

3

题意:

给你一个无向图,让你招到一个路径,这条路径中”桥“最多。

输出最多的桥的数量。

思路:

直接用tarjan强连通缩点后建树,然后树的直径就是答案。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 700010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const int MAXN = maxn;
const int MAXM = maxn; struct Edge {
int to, next;
bool cut;
} edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong数组的值是1~block
int Index, top;
int block;
bool Instack[MAXN];
int bridge; void addedge(int u, int v)
{
edge[tot].to = v; edge[tot].next = head[u]; edge[tot].cut = false;
head[u] = tot++;
}
void Tarjan(int u, int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if ( v == pre ) { continue; }
if ( !DFN[v] ) {
Tarjan(v, u);
if (Low[u] > Low[v]) { Low[u] = Low[v]; }
if (Low[v] > Low[u]) {
bridge++;
edge[i].cut = true;
edge[i ^ 1].cut = true;
}
} else if (Instack[v] && Low[u] > DFN[v]) {
Low[u] = DFN[v];
}
}
if (Low[u] == DFN[u]) {
block++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
} while ( v != u );
}
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
} vector<int>vec[MAXN];
// 调用lca求最近公共祖先
// ans为在U和V之间加再加一个边,剩下的桥数量。
// int ans = 0; int ans = 0;
int dist[MAXN];
int id;
int num = -1;
void dfs(int x, int pre)
{
dist[x] = dist[pre] + 1;
for (auto y : vec[x]) {
if (y != pre) {
dfs(y, x);
}
}
}
void solve(int N)
{
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
Index = top = block = 0;
Tarjan(1, 1);
for (int i = 1; i <= block; i++) {
vec[i].clear();
}
for (int u = 1; u <= N; u++)
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (Belong[u] != Belong[v]) {
vec[Belong[u]].push_back(Belong[v]);
}
// vec[Belong[v]].push_back(Belong[u]);
}
// repd(i, 1, block) {
// sort(ALL(vec[i]));
// vec[i].erase(unique(ALL(vec[i])), vec[i].end());
// }
dfs(1, 0);
repd(i, 1, block) {
if (dist[i] > num) {
num = dist[i];
id = i;
}
}
dfs(id, 0);
repd(i, 1, block) {
ans = max(ans, dist[i]);
}
printf("%d\n", ans - 1);
}
int n, m;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); init();
gg(n);
gg(m);
repd(i, 1, m) {
int x, y;
gg(x); gg(y);
addedge(x, y);
addedge(y, x);
}
solve(n); return 0;
} inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

E - We Need More Bosses CodeForces - 1000E (tarjan缩点,树的直径)的更多相关文章

  1. F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解

    题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...

  2. We Need More Bosses CodeForces - 1000E(缩点 建图 求桥 求直径)

    题意: 就是求桥最多的一条路 解析: 先求连通分量的个数 然后缩点建图  求直径即可 #include <bits/stdc++.h> #define mem(a, b) memset(a ...

  3. We Need More Bosses CodeForces - 1000E (无向图缩点)

    大意: 给定无向连通图, 定义两个点$s,t$个价值为切断一条边可以使$s,t$不连通的边数. 求最大价值. 显然只有桥会产生贡献. 先对边双连通分量缩点建树, 然后求直径即为答案. #include ...

  4. cf1000E We Need More Bosses (tarjan缩点+树的直径)

    题意:无向联通图,求一条最长的路径,路径长度定义为u到v必须经过的边的个数 如果把强联通分量都缩成一个点以后,每个点内部的边都是可替代的:而又因为这是个无向图,缩完点以后就是棵树,跑两遍dfs求直径即 ...

  5. codeforces GYM 100114 J. Computer Network 无相图缩点+树的直径

    题目链接: http://codeforces.com/gym/100114 Description The computer network of “Plunder & Flee Inc.” ...

  6. 4612 warm up tarjan+bfs求树的直径(重边的强连通通分量)忘了写了,今天总结想起来了。

    问加一条边,最少可以剩下几个桥. 先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥. 本题要处理重边的情况. 如果本来就两条重边,不能算是桥. 还会爆栈,只能C++交,手动加栈了 别人都是用 ...

  7. CodeForces - 1000E :We Need More Bosses(无向图缩点+树的直径)

    Your friend is developing a computer game. He has already decided how the game world should look lik ...

  8. CF487E Tourists - Tarjan缩点 + 树剖 + multiset

    Solution 先Tarjan求出点双联通分量 并缩点. 用$multiset$维护 点双内的最小点权. 容易发现, 点双内的最小点权必须包括与它相连的割边的点权. 所以我们必须想办法来维护. 所以 ...

  9. Codeforces 734E Anton and Tree(缩点+树的直径)

    题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...

随机推荐

  1. 【POJ - 1950】Dessert(dfs)

    -->Dessert Descriptions: 给你一个数N(3<=N<=15);每个数之间有三种运算符“‘+’,‘-’,‘.’”.输出和值等于零的所有的运算情况及次数num,如果 ...

  2. iscsi-分区类型

    iSCSI简介(Internet SCSI): iSCSI 小型计算机系统接口,IBM公司研发,用于在IP网络上运行SCSI协议:解决了 SCSI需要直连存储设备的局限性:可以不停机扩展存储容量,iS ...

  3. 【VS开发】【DSP开发】如何使用WinDriver为PCIe采集卡装驱动

    如何使用WinDriver为PCIe采集卡装驱动 第一步:使用WinDriver生成驱动 1.运行Drier Wizard 2.点击New host driverproject 3.在列表中,选择待安 ...

  4. Elasticsearch5.x 引擎健康情况

    查看引擎健康情况 [root@w]# curl -XGET "http://localhost:9200/_cat/health?v" epoch timestamp cluste ...

  5. SQL SERVER DATEADD函数

    定义: DATEADD() 函数在日期中加上指定的时间间隔. ※指定的时间间隔可以为负数 语法: DATEADD(datepart,number,date) 参数: ①datepart 参数可以是下列 ...

  6. py2和py3之间的不同

    1.print函数 很琐碎,而 print 语法的变化可能是最广为人知的了,但是仍值得一提的是: Python 2 的 print 声明已经被 print() 函数取代了,这意味着我们必须包装我们想打 ...

  7. Codeforces 1236E. Alice and the Unfair Game

    传送门 首先可以注意到对于固定的起点 $S$ ,它最终能走到的终点一定是一段区间 这个用反证法容易证明,假设合法区间存在断点,这个点左右都可以作为终点 那么分成区间断点在起点左边和起点右边讨论一下即可 ...

  8. java中的接口和php的接口的区别

    php: 规范: 接口是一种特殊的抽象类,这种抽象类中只包含抽象方法和静态常量. 在接口中的抽象方法只能是public的,默认也是public权限. abstract和final修饰符也不能修饰接口中 ...

  9. 【weixin】微信支付简介

    一.微信支付模式 1.付款码支付 付款码支付是用户展示微信钱包内的“刷卡条码/二维码”给商户系统扫描后直接完成支付的模式.主要应用线下面对面收银的场景. 2.Native支付 Native支付是商户系 ...

  10. JQuery --- 第六期 (Ajax)

    欢迎访问我的个人博客,获取更多有用的东西 链接一 链接二 也可以关注我的微信订阅号:CN丶Moti 点击查看Ajax