E - We Need More Bosses CodeForces - 1000E (tarjan缩点,树的直径)
E - We Need More Bosses
Your friend is developing a computer game. He has already decided how the game world should look like — it should consist of nn locations connected by mm two-waypassages. The passages are designed in such a way that it should be possible to get from any location to any other location.
Of course, some passages should be guarded by the monsters (if you just can go everywhere without any difficulties, then it's not fun, right?). Some crucial passages will be guarded by really fearsome monsters, requiring the hero to prepare for battle and designing his own tactics of defeating them (commonly these kinds of monsters are called bosses). And your friend wants you to help him place these bosses.
The game will start in location ss and end in location tt, but these locations are not chosen yet. After choosing these locations, your friend will place a boss in each passage such that it is impossible to get from ss to tt without using this passage. Your friend wants to place as much bosses as possible (because more challenges means more fun, right?), so he asks you to help him determine the maximum possible number of bosses, considering that any location can be chosen as ss or as tt.
Input
The first line contains two integers nn and mm (2≤n≤3⋅1052≤n≤3⋅105, n−1≤m≤3⋅105n−1≤m≤3⋅105) — the number of locations and passages, respectively.
Then mm lines follow, each containing two integers xx and yy (1≤x,y≤n1≤x,y≤n, x≠yx≠y) describing the endpoints of one of the passages.
It is guaranteed that there is no pair of locations directly connected by two or more passages, and that any location is reachable from any other location.
Output
Print one integer — the maximum number of bosses your friend can place, considering all possible choices for ss and tt.
Examples
Input
5 51 22 33 14 15 2
Output
2
Input
4 31 24 33 2
Output
3
题意:
给你一个无向图,让你招到一个路径,这条路径中”桥“最多。
输出最多的桥的数量。
思路:
直接用tarjan强连通缩点后建树,然后树的直径就是答案。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 700010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const int MAXN = maxn;
const int MAXM = maxn;
struct Edge {
int to, next;
bool cut;
} edge[MAXM];
int head[MAXN], tot;
int Low[MAXN], DFN[MAXN], Stack[MAXN], Belong[MAXN]; //Belong数组的值是1~block
int Index, top;
int block;
bool Instack[MAXN];
int bridge;
void addedge(int u, int v)
{
edge[tot].to = v; edge[tot].next = head[u]; edge[tot].cut = false;
head[u] = tot++;
}
void Tarjan(int u, int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for (int i = head[u]; i != -1; i = edge[i].next) {
v = edge[i].to;
if ( v == pre ) { continue; }
if ( !DFN[v] ) {
Tarjan(v, u);
if (Low[u] > Low[v]) { Low[u] = Low[v]; }
if (Low[v] > Low[u]) {
bridge++;
edge[i].cut = true;
edge[i ^ 1].cut = true;
}
} else if (Instack[v] && Low[u] > DFN[v]) {
Low[u] = DFN[v];
}
}
if (Low[u] == DFN[u]) {
block++;
do {
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
} while ( v != u );
}
}
void init()
{
tot = 0;
memset(head, -1, sizeof(head));
}
vector<int>vec[MAXN];
// 调用lca求最近公共祖先
// ans为在U和V之间加再加一个边,剩下的桥数量。
// int ans = 0;
int ans = 0;
int dist[MAXN];
int id;
int num = -1;
void dfs(int x, int pre)
{
dist[x] = dist[pre] + 1;
for (auto y : vec[x]) {
if (y != pre) {
dfs(y, x);
}
}
}
void solve(int N)
{
memset(DFN, 0, sizeof(DFN));
memset(Instack, false, sizeof(Instack));
Index = top = block = 0;
Tarjan(1, 1);
for (int i = 1; i <= block; i++) {
vec[i].clear();
}
for (int u = 1; u <= N; u++)
for (int i = head[u]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if (Belong[u] != Belong[v]) {
vec[Belong[u]].push_back(Belong[v]);
}
// vec[Belong[v]].push_back(Belong[u]);
}
// repd(i, 1, block) {
// sort(ALL(vec[i]));
// vec[i].erase(unique(ALL(vec[i])), vec[i].end());
// }
dfs(1, 0);
repd(i, 1, block) {
if (dist[i] > num) {
num = dist[i];
id = i;
}
}
dfs(id, 0);
repd(i, 1, block) {
ans = max(ans, dist[i]);
}
printf("%d\n", ans - 1);
}
int n, m;
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout);
init();
gg(n);
gg(m);
repd(i, 1, m) {
int x, y;
gg(x); gg(y);
addedge(x, y);
addedge(y, x);
}
solve(n);
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
E - We Need More Bosses CodeForces - 1000E (tarjan缩点,树的直径)的更多相关文章
- F - Warm up HDU - 4612 tarjan缩点 + 树的直径 + 对tajan的再次理解
题目链接:https://vjudge.net/contest/67418#problem/F 题目大意:给你一个图,让你加一条边,使得原图中的桥尽可能的小.(谢谢梁学长的帮忙) 我对重边,tarja ...
- We Need More Bosses CodeForces - 1000E(缩点 建图 求桥 求直径)
题意: 就是求桥最多的一条路 解析: 先求连通分量的个数 然后缩点建图 求直径即可 #include <bits/stdc++.h> #define mem(a, b) memset(a ...
- We Need More Bosses CodeForces - 1000E (无向图缩点)
大意: 给定无向连通图, 定义两个点$s,t$个价值为切断一条边可以使$s,t$不连通的边数. 求最大价值. 显然只有桥会产生贡献. 先对边双连通分量缩点建树, 然后求直径即为答案. #include ...
- cf1000E We Need More Bosses (tarjan缩点+树的直径)
题意:无向联通图,求一条最长的路径,路径长度定义为u到v必须经过的边的个数 如果把强联通分量都缩成一个点以后,每个点内部的边都是可替代的:而又因为这是个无向图,缩完点以后就是棵树,跑两遍dfs求直径即 ...
- codeforces GYM 100114 J. Computer Network 无相图缩点+树的直径
题目链接: http://codeforces.com/gym/100114 Description The computer network of “Plunder & Flee Inc.” ...
- 4612 warm up tarjan+bfs求树的直径(重边的强连通通分量)忘了写了,今天总结想起来了。
问加一条边,最少可以剩下几个桥. 先双连通分量缩点,形成一颗树,然后求树的直径,就是减少的桥. 本题要处理重边的情况. 如果本来就两条重边,不能算是桥. 还会爆栈,只能C++交,手动加栈了 别人都是用 ...
- CodeForces - 1000E :We Need More Bosses(无向图缩点+树的直径)
Your friend is developing a computer game. He has already decided how the game world should look lik ...
- CF487E Tourists - Tarjan缩点 + 树剖 + multiset
Solution 先Tarjan求出点双联通分量 并缩点. 用$multiset$维护 点双内的最小点权. 容易发现, 点双内的最小点权必须包括与它相连的割边的点权. 所以我们必须想办法来维护. 所以 ...
- Codeforces 734E Anton and Tree(缩点+树的直径)
题目链接: Anton and Tree 题意:给出一棵树由0和1构成,一次操作可以将树上一块相同的数字转换为另一个(0->1 , 1->0),求最少几次操作可以把这棵数转化为只有一个数字 ...
随机推荐
- C# 关于App.config
App.config是winfrom等程序的应用程序配置文件,用来存放一些参数. app.config只会在应用程序启动时加载一次. 当程序在运行中修改app.config中的参数是不会生效,必须要重 ...
- 论文阅读 | ERNIE: Enhanced Representation through Knowledge Integration
摘要 知识加强的语义表示模型. knowledge masking strategies : entity-level masking / phrase-level masking 实 ...
- 获得http请求的RequestID
firefox: F12---network---响应, 请求一个页面:
- input框改变默认样式
input[type="radio"] { width: 2rem; height: 2rem; -webkit-appearance: none; /*清除复选框默认样式*/ ...
- [转帖] ./demoCA/newcerts: No such file or directory openssl 生成证书时问题的解决.
接上面一篇blog 发现openssl 生成server.crt 时有问题. 找了一个网站处理了一下: http://blog.sina.com.cn/s/blog_49f8dc400100tznt. ...
- [转帖]图说Docker架构的各种信息
图说Docker架构的各种信息 2018-07-18 15:16:04作者:linux人稿源:运维之美 https://ywnz.com/linuxyffq/2344.html 介绍Docker架 ...
- GIT SSH-KEY配置以及问题解决
GIT SSH-KEY 生成 我们在使用git的时候需要生成ssh key,我在这里说一下生成key和一些个性化操作,如:保存key的位置,如何解决Could not open a connectio ...
- JZOJ.1150【贪心算法】IQ
欢迎转载,请附上原链接https://www.cnblogs.com/Code-Garden/p/11276741.html(也没人会看) 一道对我来说较难的贪心题 题目描述 根据世界某权威学会的一项 ...
- PAT A1046 Shortest Distance (20 分)
题目提交一直出现段错误,经过在网上搜索得知是数组溢出,故将数组设置的大一点 AC代码 #include <cstdio> #include <algorithm> #defin ...
- Elastic Search的聚合搜索
就是使用ES提供的aggs语法结果,使用DSL搜索的语法,实现聚合数据的统计,查询.ES中,如果新增document数据的时候,对应的index和type不存在,则自动创建. 1 准备源数据 PUT ...