题目传送门

题目描述

平面上有N条直线,且无三线共点,那么这些直线能有多少不同的交点数?

输入格式

一个正整数N

输出格式

一个整数表示方案总数

输入输出样例

输入 #1
 4
输出 #1
 5

说明/提示

N<=25


  分析:

  给定你$n$条直线,如果其中有$i$条平行,其他的不平行,那么交点数就是$(i*(n-i))$+($n-i$条直线的交点数)。那么我们就可以递归求出$n$条直线所有可能的方案(因为$n$很小),然后记录方案数就行了。

  其实也就等价于把这$n$条直线分成若干个平行的直线组,然后一组一组的加上交点数。

  Code:

//It is made by HolseLee on 16th Aug 2019
//Luogu.org P2789
#include<bits/stdc++.h>
using namespace std; int n,ans;
bool vis[]; void dfs(int now,int num)
{
if( now== ) {
if( !vis[num] ) ans++;
vis[num]=; return;
}
for(int i=now; i>=; --i) dfs(now-i,i*(now-i)+num);
} int main()
{
cin>>n; dfs(n,); cout<<ans; return ;
}

洛谷P2789 直线交点数 [数论,递归]的更多相关文章

  1. P2789 直线交点数

    P2789 直线交点数分成两种情况,一种是平行直线,一种是自由直线,在自由直线中可以存在平行直线,但是不能和第一组的直线平行.自由直线和平行直线的交点是i*(n-i). #include<ios ...

  2. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  3. 洛谷P4204 [NOI2006]神奇口袋 数论

    正解:数论 解题报告: 传送门 第一次用\(\LaTeX\)和\(markdown\),,,如果出了什么锅麻烦在评论跟我港句QAQ \(1)x_{i}\)可以直接离散 \(2)y_{i}\)的顺序对结 ...

  4. 洛谷P4358密钥破解 [CQOI2016] 数论

    正解:数论 解题报告: 先,放个传送门QwQ 这题难点可能在理解题意,,, 所以我先放个题意QAQ 大概就是说,给定一个整数N,可以被拆成两个质数的成绩p*q,然后给出了一个数e,求d满足e*d=1( ...

  5. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

  6. 洛谷P3166 数三角形 [CQOI2014] 数论

    正解:数论 解题报告: 传送门! 很久以前做的题了呢,,,回想方法还想了半天QAQ 然后写这题题解主要是因为看到了好像有很新颖的法子,就想着,学习一下趴,那学都学了不写博客多可惜 首先港下最常规的方法 ...

  7. 洛谷P2312 解方程 [noip2014] 数论

    正解:数论 解题报告: 这儿是,传送门qwq 又是很妙的一道题呢,专门用来对付我这种思维僵化了的傻逼的QAQ 首先看题目的数据范围,发现a<=1010000,很大的一个数据范围了呢,那这题肯定不 ...

  8. 洛谷P1403 [AHOI2005] 约数研究 [数论分块]

    题目传送门 约数研究 题目描述 科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能.由于在去年一年的辛苦工作取得了不错的成绩, ...

  9. 洛谷 P2089 烤鸡【DFS递归/10重枚举】

    [链接]:https://www.luogu.org/problemnew/show/P2089 题目描述 猪猪Hanke特别喜欢吃烤鸡(本是同畜牲,相煎何太急!)Hanke吃鸡很特别,为什么特别呢? ...

随机推荐

  1. xtrabackup原理,整库,单表,部分备份恢复

    物理备份xtrabackup原理 Percona XtraBackup(简称PXB)是 Percona 公司开发的一个用于 MySQL 数据库物理热备的备份工具,支持 MySQl(Oracle).Pe ...

  2. 8.perf top系统性能分析工具

    perf 是一个调查 Linux 中各种性能问题的有力工具. # perf --help  usage: perf [--version] [--help] COMMAND [ARGS]  The m ...

  3. 二、python数据类型、字符编码、文件处理

    一. 前言 1. 什么是数据: x = 10,10就是我们要存储的数据 2. 为何数据要分不同的类型 数据是用来表示状态的, 不同的状态就应该用不同类型的数据去表示 3. 数据类型 数字(整型.长整型 ...

  4. hdu 6053 trick gcd 容斥

    http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...

  5. Typeof() 和 GetType()区别

    1.typeof(x)中的x,必须是具体的类名.类型名称等,不可以是变量名称. 2.GetType()方法继承自Object,所以C#中任何对象都具有GetType()方法,它的作用和typeof() ...

  6. mysql replace substring 字符串截取处理

    SELECT a1,a2,replace(a2, "豫ICP备16006180号-", "") a22,a3,a4,a5 FROM `aaab` order b ...

  7. 【原创】大叔经验分享(79)mysql内存设置

    mysql内存设置,首先要知道当前的设置 MySQL [(none)]> show variables like '%buffer%'; +--------------------------- ...

  8. HTML的标签简单概括

    段落标签 <p></p> 属性  说明 值 align 对其方式 left(默认).right.center 水平线 <hr /> 属性  说明   值 width ...

  9. api校验

    服务端代码: import hashlib import time KEY = 'RTYUIFGHJKVBNM' def gen_key(ctime): md5 = hashlib.md5() key ...

  10. Spring7大模块

    Spring 框架是一个分层架构,由 7 个定义良好的模块组成.Spring 模块构建在核心容器之上,核心容器定义了创建.配置和管理 bean 的方式,组成 Spring 框架的每个模块(或组件)都可 ...