/*
矩阵乘法+快速幂.
一开始迷之题意..
这个gcd有个规律.
a b
b c=a*x+b(x为常数).
然后要使b+c最小的话.
那x就等于1咯.
那么问题转化为求
a b
b a+b
就是斐波那契了....
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
#define mod 1000000007
using namespace std;
LL n;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(LL n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
ans[1][2]%=mod,ans[2][2]%=mod;
printf("%d ",min(ans[1][2],ans[2][2]));
printf("%d",max(ans[1][2],ans[2][2]));
}
int main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
n=read();
if(n==1) printf("1 1\n");
else slove();
return 0;
}

Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)的更多相关文章

  1. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  2. 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp

    容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...

  3. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  4. 矩阵乘法快速幂 codevs 1250 Fibonacci数列

    codevs 1250 Fibonacci数列  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond   题目描述 Description 定义:f0=f1=1 ...

  5. ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)

    We consider problems concerning the number of ways in which a number can be written as a sum. If the ...

  6. 矩阵乘法快速幂 cojs 1717. 数学序列

    矩阵乘法模板: #define N 801 #include<iostream> using namespace std; #include<cstdio> int a[N][ ...

  7. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  8. codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

    对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...

  9. [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

    题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...

随机推荐

  1. linux学习笔记(1) -- 关于命令的一些操作

    Linux 目录 /:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录.所有的东西都是从这里开始.当你在终端里输入“/home”,你其实是在告诉电脑,先从/(根目录)开始,再进入到ho ...

  2. prometheus-常用资源对象

    监控 Kubernetes 常用资源对象 Prometheus 来自动发现 Kubernetes 集群的节点,用到了 Prometheus 针对 Kubernetes 的服务发现机制kubernete ...

  3. vue之多页面的开发

    我们平常用vue开发的时候总觉得vue好像就是专门为了单页面应用而诞生的,其实不是.因为vue在工程化开发的时候很依赖webpack,而webpack是将所有的资源整合到一块,弄成一个单页面.但是vu ...

  4. Docker 杂记

    1.配置阿里云加速 :可以找到各种加速URL.比如 https://tnxkcso1.mirror.aliyuncs.com/ 2.windows 配置: 3.docker info可以看到新的配置已 ...

  5. .NET Core 3.0 发布单文件可执行程序

    Windows dotnet publish -r win10-x64 /p:PublishSingleFile=true maxOS dotnet publish -r osx-x64 /p:Pub ...

  6. C++单链表类(带头结点)

    Link.h #ifndef _LINK_0411 #define _LINK_0411 #include <string> #include <iostream> //定义数 ...

  7. 07 Redis存储Session

    django-redis-sessions 官方文档:https://pypi.org/project/django-redis-sessions/ dango-redis 官方文档:http://n ...

  8. 使用百度echarts仿雪球分时图(二)

    上一章简单的介绍了一下分时图的构成,其实就是折线图跟柱状图的组成.本来这章打算是把分时图做完,然后再写一章来进行美化和总结,但是仔细观察了一下,发现其实东西还是有点多的.分时图的图表做完后,还要去美化 ...

  9. Heap(堆)与Stack(栈)的区别详解

    在了解堆与栈之前,我们想来了解下程序的内存分配 一个编译的程序占用的内存分为以下几个部分  :  1.栈区(stack)—   由编译器自动分配释放   ,存放函数的参数值,局部变量的值等.其    ...

  10. 【loj#6220】sum

    题目传送门:https://loj.ac/problem/6220 题意:对于一个序列$a$,找出它的一个子序列$b$,使$\sum_{a_i \in b}a_i \equiv 0 \pmod n$ ...