Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)
/*
矩阵乘法+快速幂.
一开始迷之题意..
这个gcd有个规律.
a b
b c=a*x+b(x为常数).
然后要使b+c最小的话.
那x就等于1咯.
那么问题转化为求
a b
b a+b
就是斐波那契了....
*/
#include<iostream>
#include<cstdio>
#define MAXN 3
#define LL long long
#define mod 1000000007
using namespace std;
LL n;
LL a[MAXN][MAXN],ans[MAXN][MAXN],c[MAXN][MAXN],b[MAXN][MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
void mi(LL n)
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+ans[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+b[i][k]*b[k][j]%mod)%mod;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
b[1][2]=ans[1][2]=1,b[2][1]=ans[2][1]=1;
b[1][1]=ans[1][1]=0;
b[2][2]=ans[2][2]=1;
mi(n);
ans[1][2]%=mod,ans[2][2]%=mod;
printf("%d ",min(ans[1][2],ans[2][2]));
printf("%d",max(ans[1][2],ans[2][2]));
}
int main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
n=read();
if(n==1) printf("1 1\n");
else slove();
return 0;
}
Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)的更多相关文章
- 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解
矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...
- 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp
容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...
- 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2
1732 Fibonacci数列 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 在“ ...
- 矩阵乘法快速幂 codevs 1250 Fibonacci数列
codevs 1250 Fibonacci数列 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 定义:f0=f1=1 ...
- ZOJ - 3216:Compositions (DP&矩阵乘法&快速幂)
We consider problems concerning the number of ways in which a number can be written as a sum. If the ...
- 矩阵乘法快速幂 cojs 1717. 数学序列
矩阵乘法模板: #define N 801 #include<iostream> using namespace std; #include<cstdio> int a[N][ ...
- ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)
http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...
- codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数
对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
随机推荐
- jsp页面报错,各种错误码意思
基本原则: 2xx = Success(成功) 3xx = Redirect(重定向) 4xx = User error(客户端错误) 5xx = Server error(服务器端错误) 状态码 ( ...
- docker 入门1 - 方向 【翻译】
开始,第 1 部分:方向和设置 欢迎!我们很高兴您想学习 Docker.Docker 入门教程将教您如何: 设置 Docker 环境(当前步骤) 生成映像并将其作为一个容器运行 缩放应用以运行多个容器 ...
- 怎样禁用浏览器的Cookie功能
使用: window.navigator.cookieEnabled; window.navigator.cookieEnabled = true; 这样设置以后, 浏览器就不会接受和保存服务器传过来 ...
- IE各版本处理XML的方式
一.支持DOM2级的方式我们知道,现阶段支持DOM2的主流浏览器有IE9+.Firefox.Opera.Chrome和Safari.1.1.创建XML//实际上,DOM2级在document.impl ...
- 使用cublas 矩阵库函数实现矩阵相乘
2014-08-10 cublas中执行矩阵乘法运算的函数 首先要注意的是cublas使用的是以列为主的存储方式,和c/c++中的以行为主的方式是不一样的.处理方法可参考下面的注释代码 // SOME ...
- vue runtime报错问题
Webpack中导入vue和普通网页中导入vue的区别1. 普通网页导入vue方式 <script></script> 2. Webpack导入vue方式 Import Vue ...
- FastJson学习:JSON格式字符串、JSON对象及JavaBean之间的相互转换
当前台需要传送一系列相似数据到后端时,可以考虑将其组装成json数组对象,然后转化为json形式的字符串传输到后台 例如: nodes = $('#PmPbsSelect_tree').tree('g ...
- C++ STL 之 string
#include <iostream> #include <string> using namespace std; // 初始化 void test01() { string ...
- Java 程序员必备的一些流程图
1.spring的生命周期 2.TCP三次握手,四次挥手 3.线程池执行流程图 4.JVM内存结构 5.Java内存模型 6.springMVC执行流程图 7.JDBC执行流程 8.spring cl ...
- java EE,java Web中的400,404,405等各种错误介绍
4 请求失败4xx 4xx应答定义了特定服务器响应的请求失败的情况.客户端不应当在不更改请求的情况下重新尝试同一个请求.(例如,增加合适的认证信息).不过,同一个请求交给不同服务器也许就会成功. 4. ...