题解[51nod1555] 布丁怪
题解[51nod1555] 布丁怪
题面
解析
本文参考这位dalao的题解
首先有一个巧妙的转换,
开一个数组记录每个横坐标的纵坐标,
简单来说就是对于点(x,y),令a[x]=y.
于是问题就变成了求满足区间最大值与最小值的差恰好等于区间长度的区间数.
于是可以考虑分治不要问我怎么想到的
设当前区间为l,r,中点为mid.
mx[i]=i~mid的最大值(l<=mid),mid+1到i的最大值(i>mid)
mn[i]同理.
分情况讨论:
1.区间最大值和最小值都在左边.
设右端点为j,这时候j要满足mn[j+1]<mn[i]或mx[j+1]>mx[i],否则j+1也在mn~mx这个范围里面,j肯定不能是端点.
然后再看j-i是否等于mx[i]-mn[i].
2.最大值在左边,最小值在右边.
因为mx和mn都是单调的,所以拿两个指针L和R维护满足要求的右端点,
然后设右端点为j,则mx[i]-mn[j]=j-i,
即mx[i]+i=mn[j]+j,
开个桶维护一下就行了.
code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define fre(x) freopen(x".in","r",stdin),freopen(x".out","w",stdout)
using namespace std;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch>'9'||ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
const int N=1000005;
int n,a[N];ll ans,cnt[N];
int mx[N],mn[N];
inline void work(int l,int r,int m){
mx[m]=mn[m]=a[m];
for(int i=m-1;i>=l;i--){
mx[i]=max(mx[i+1],a[i]);
mn[i]=min(mn[i+1],a[i]);
}
mx[m+1]=mn[m+1]=a[m+1];
for(int i=m+2;i<=r;i++){
mx[i]=max(mx[i-1],a[i]);
mn[i]=min(mn[i-1],a[i]);
}
int L=m+1,R=m,j=m;
for(int i=m;i>=l;i--){
while(j<r&&mx[j+1]<mx[i]&&mn[j+1]>mn[i]) j++;
if(mx[i]-mn[i]==j-i&&j>m) ans++;
while(R<r&&mx[R+1]<mx[i]) R++,cnt[R+mn[R]]++;
while(L<=r&&mn[L]>mn[i]) cnt[L+mn[L]]--,L++;
if(L<=R) ans+=cnt[i+mx[i]];
}
while(L<=r) cnt[L+mn[L]]--,L++;
while(R<r) R++,cnt[R+mn[R]]++;
}
inline void solve(int l,int r){
if(l==r){ans++;return ;}
int mid=(l+r)>>1;
solve(l,mid);solve(mid+1,r);
work(l,r,mid);
reverse(a+l,a+r+1);
if((r-l+1)%2) mid--;
work(l,r,mid);
reverse(a+l,a+r+1);
}
signed main(){
n=read();
for(int i=1;i<=n;i++)
{int x=read();a[x]=read();}
solve(1,n);
printf("%lld\n",ans);
return 0;
}
题解[51nod1555] 布丁怪的更多相关文章
- 【51Nod1555】布丁怪
[51Nod1555]布丁怪 题面 51Nod 题目大意: 给你一个\(n\times n\)的棋盘以及\(n\)个棋子,每个棋子坐标为\((x_i,y_i)\),保证棋盘的每一行或一列都有且仅有一个 ...
- 51Nod 1555 布丁怪
题目描述: 布丁怪这一款游戏是在一个n×n 的矩形网格中进行的,里面有n个网格有布丁怪,其它的一些格子有一些其它的游戏对象.游戏的过程中是要在网格中移动这些怪物.如果两个怪物碰到了一起,那么他们就会变 ...
- Codeforces 436D Pudding Monsters
题意简述 开始有无限长的一段格子,有n个格子种有布丁怪兽,一开始连续的布丁怪兽算一个布丁怪兽. 每回合你可以将一个布丁怪兽向左或右移动,他会在碰到第一个布丁怪兽时停下,并与其合并. 有m个特殊格子,询 ...
- [CF436D]Pudding Monsters
题目大意:有一个长度为$2\times 10^5$的板,有$n(n\leqslant 10^5)$个格子$a_1,\dots,a_n$有布丁怪兽,一开始连续的怪兽算一个怪兽,有$m(m\leqslan ...
- ETO的公开赛T3《寻星》 题解(BY 超級·考場WA怪 )
题解 寻星 题意:给定一个有向带权图,定义从一点到另一点的某条路径长为路径上所有边权的最大值,并给定四个点编号w,t1,t2,t3. 求出一个点s,使它在到t1,t2,t3三点最短路径最大值最大或者根 ...
- 虎符ctf-MISC-奇怪的组织(看完官方题解,找到了)
一道取证题,一整场比赛,基本就死磕了这一题 写的很乱,因为当时的思维就是那么乱,完全没有注意到出题人的提示, 还没做出来,没有找到关键key 那个人的real name 文档:虎符.note链接:ht ...
- 洛谷 P3201 梦幻布丁 题解
(这篇题解可能没什么营养,主要是记录一下我用map乱搞启发式合并的神奇做法) 首先我们知道,我们肯定要用一堆集合维护每一种数当前的位置,并支持合并和数连续出现的段数两种操作 我发现这个东西并不好搞,但 ...
- noip2000提高组题解
事实再次向我证明了RP的重要性... 第一题:进制转换 是我最没有把握AC的一道题目却是我唯一一道AC的题目,真是讽刺.看完题目几乎完全没有往正常的解法(取余倒序)去想,直接写了搜索,因为数据范围在2 ...
- [HNOI2009]梦幻布丁 算法技巧之邻接链
题目描述 N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2,2,1的四个布丁一共有3段颜色. 输入输出格式 输入格式: 第 ...
随机推荐
- SpringBoot之分页插件PageHelper的使用
在springboot中使用PageHelper插件有两种较为相似的方式,接下来我就将这两种方式进行总结. 方式一:使用原生的PageHelper 1.在pom.xml中引入依赖 <depend ...
- 阿里云服务器安装mysql8遇到的问题
1.提供一个离线mysql下载路径:http://mirrors.163.com/mysql/Downloads/MySQL-8.0/ 2.在线mysql8安装: 2.1 下载mysql: wget ...
- 批处理cmd开启,关闭防火墙
管理员启动dos窗口 开启防火墙: netsh advfirewall set allprofiles state on 关闭防火墙: netsh advfirewall set allprofile ...
- js 中加减乘除 比较精确的算法,js本身有些运算会出错,这里给出较精确的算法
问题这样的: 37.5*5.5=206.08 (JS算出来是这样的一个结果,我四舍五入取两位小数) 我先怀疑是四舍五入的问题,就直接用JS算了一个结果为:206.08499999999998 怎么会 ...
- Educational Codeforces Round 65 (Div. 2)
A.前n-10个有8即合法. #include<cstdio> #include<cstring> #include<iostream> #include<a ...
- netcat瑞士军刀实现电脑远程控制termux
关于nc实现远程控制termux 1.首先termux安装namp pkg install namp 2.windows系统安装netcat 此为netcat下载连接 下载得到zip压缩包,解压得到里 ...
- 基于【 bug解决】一 || mysql的ONLY_FULL_GROUP_BY导致的sql语句错误
一.Mysql错误: In aggregated query without GROUP BY, expression #1 of SELECT list contains nonaggregated ...
- 第十八篇:简易版web服务器开发
在上篇有实现了一个静态的web服务器,可以接收web浏览器的请求,随后对请求消息进行解析,获取客户想要文件的文件名,随后根据文件名返回响应消息:那么这篇我们对该web服务器进行改善,通过多任务.非阻塞 ...
- Django之模型层2
多表操作 创建模型 实例:我们来假定下面这些概念,字段和关系 作者模型:一个作者有姓名和年龄. 作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息.作者详情模型和作者模型之间是一对 ...
- klia linux tools 使用方法整理
第一部分 信息收集工具 1.Zenmap 和nmap 作用是一样的,只是使用的操作方式不一样, Zenmap使用 的GUI,nmap 是基于命令行的.在两个使用的命令是一样的. 使用SYN扫描 就 ...