codeforces#1249F. Maximum Weight Subset(树上dp)
题目链接:
http://codeforces.com/contest/1249/problem/F
题意:
一棵树的每个节点有个权值,选择一个节点集,使得任意点对的距离大于$k$
求最大节点集权值,节点集权值为节点集中节点权值和
数据范围:
$1\leq n \leq 200$
$1\leq k \leq 200$
分析:
定义$dp[v][i]$,代表在$v$这颗子树中,被选择的点最小深度恰好是$i$的最大答案
初始状态$dp[v][0]=a[v]$,这是没有子树的情况,然后再逐个添加子树
$ans=max(dp[n][i])$
AC代码:
#include<bits/stdc++.h>
#define pii pair<int,int>
#define ll long long
using namespace std;
const int maxn=200+7;
int n,m,a[maxn],dp[maxn][maxn],tem[maxn];//dp[i][j]代表在i这个子树中,被选择的点的最小深度是j
//ans=max(dp[n][j])
vector<int>ve[maxn];
void dfs(int x,int f){
dp[x][0]=a[x];//dp[x][0]比较特殊,不能通过子树转移
for(int i=0;i<ve[x].size();i++){
int v=ve[x][i];
if(v==f)continue;
dfs(v,x);
for(int j=0;j<=m;j++)tem[j]=dp[x][j]; for(int j=0;j<=m;j++)//枚举x子树中被用上的最小深度差为j
for(int k=0;k<=m;k++)//枚举v子树中被用上的最小深度差为k
if(j+k+1>=m)//深度相加合法,也就是可以这么选择
tem[min(j,k+1)]=max(tem[min(j,k+1)],dp[x][j]+dp[v][k]); for(int j=0;j<=m;j++)dp[x][j]=tem[j];//转移完再更新,保证是新子树和原来的子树们更新
}
}
int main(){
scanf("%d %d",&n,&m);
m++;
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=n-1;i++){
int a,b;
scanf("%d %d",&a,&b);
ve[a].push_back(b);
ve[b].push_back(a);
}
dfs(1,-1);
int ans=0;
for(int i=0;i<=m;i++)ans=max(ans,dp[1][i]);
printf("%d\n",ans);
return 0;
}
codeforces#1249F. Maximum Weight Subset(树上dp)的更多相关文章
- Codeforces 1249F Maximum Weight Subset (贪心)
题意 在一颗有点权的树上,选若干个点,使得这些点两两距离大于k,且点权和最大 思路 贪心的取比较大的值即可 将所有点按照深度从大到小排序,如果当前点点权\(a[i]\)大于0,则将距离为k以内的所有点 ...
- CF1249F Maximum Weight Subset
CF1249F Maximum Weight Subset 洛谷评测传送门 题目描述 You are given a tree, which consists of nn vertices. Reca ...
- F. Maximum Weight Subset(贪心or树形dp解法)
题:https://codeforces.com/contest/1249/problem/F 题意:给一颗树,边权为1,节点有点权,问取到一个点集,俩俩之间路径超过k,是点权和最大 思路:贪心地取点 ...
- Codeforces 1249 F. Maximum Weight Subset
传送门 设 $f[x][i]$ 表示 $x$ 的子树中,离 $x$ 最近的选择的节点距离为 $i$ 的合法方案的最大价值 设 $val[x]$ 表示节点 $x$ 的价值,首先有 $f[x][0]=va ...
- 【CF1249F】Maximum Weight Subset(贪心)
题意:给定一棵n个点带点权的树,要求从中选出一个点集,使得这些点两两之间距离都大于K,求最大点权和 n,K<=2e2,1<=a[i]<=1e5 思路:树形DP显然可做,极限是n方,然 ...
- CodeForces 690C2 Brain Network (medium)(树上DP)
题意:给定一棵树中,让你计算它的直径,也就是两点间的最大距离. 析:就是一个树上DP,用两次BFS或都一次DFS就可以搞定.但两次的时间是一样的. 代码如下: #include<bits/std ...
- Codeforces Round #526 (Div. 2) D. The Fair Nut and the Best Path 树上dp
D. The Fair Nut and the Best Path 题意:给出一张图 点有权值 边也要权值 从任意点出发到任意点结束 到每个点的时候都可以获得每个点的权值,而从边走的时候都要消耗改边的 ...
- Codeforces - 702A - Maximum Increase - 简单dp
DP的学习计划,刷 https://codeforces.com/problemset?order=BY_RATING_ASC&tags=dp 遇到了这道题 https://codeforce ...
- 2019长安大学ACM校赛网络同步赛C LaTale (树上DP)
链接:https://ac.nowcoder.com/acm/contest/897/C来源:牛客网 LaTale 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 32768K,其他语 ...
随机推荐
- 【转载】在windows上部署使用Redis
下载Redis 在Redis的官网下载页上有各种各样的版本,我这次是在windows上部署的,要去GitHub上下载.目前的是2.8.12版的,直接解压,在\bin\release 目录下有个压缩包, ...
- LunHui 的生命观
LunHui 的生命观 来源 https://www.zhihu.com/question/346510295 作者:齐天大圣链接:https://www.zhihu.com/question/346 ...
- git bash push 本地的commit到远程 -- ssh keys设置
1. 检查是否已经创建 ssh keys git bash 下,cd ~/.ssh 如何出现“No such file or directory”,则表示需要创建一个ssh keys. 2. 创建新 ...
- dvaJS Model之间的调用
const Model: ModelType = { namespace: 'namesps', state: { data: {} }, effects: { *fetch({ payload, c ...
- 为满足中国税改,SAP该如何打SPS
*****一定要先阅读这个note***** ***** 2736625 - [ZH] 应对2019中国个税改革,SAP系统升级常见问题汇总 **** 1784328 - How to check C ...
- K2 BPM_【解决方案】K2+SAP:端到端无缝集成,为企业全面赋能提速_十年专注业务流程管理系统
企业数字化转型离不开信息技术的支撑,大部分企业的各项业务都会有专业的系统,比如ERP.BI.CRM等.但这些系统往往由于无法融合,造成信息孤岛.数据断层等问题,这阻碍了企业推动数字化转型的进程.如何实 ...
- el-table——可编辑、拖拽排序与校验的formTableDrag
背景: 1.利用form进行校验输入: 2.利用sortable操作Dom替换表格数据顺序: 3.利用lodash实现数据深拷贝与参数替换等 一:最外层的数组校验 <template> & ...
- 【leetcode】338 .Counting Bits
原题 Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate t ...
- Computer Vision_33_SIFT:TILDE: A Temporally Invariant Learned DEtector——2014
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...
- 第四篇:python基础之杂货铺
在这一篇中我们将对上几篇的Python零碎的知识进行补充,即字符串的格式化输出,以及深浅拷贝,接下来我们将对这两种进行一一介绍. 一.字符串格式化输出 关于字符串的格式化输出,我们需要了解为什么需要字 ...