5、创建RDD(集合、本地文件、HDFS文件)
一、创建RDD
1、创建RDD
进行Spark核心编程时,首先要做的第一件事,就是创建一个初始的RDD。该RDD中,通常就代表和包含了Spark应用程序的输入源数据。然后在创建了初始的RDD之后,才可以通过Spark Core提供的transformation算子,对该RDD进行转换,来获取其他的RDD。 Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD;使用本地文件创建RDD;使用HDFS文件创建RDD。 1、使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用的流程。 2、使用本地文件创RDD,主要用于临时性地处理一些存储了大量数据的文件。 3、使用HDFS文件创建RDD,应该是最常用的生产环境处理方式,主要可以针对HDFS上存储的大数据,进行离线批处理操作。
2、并行化集合创建RDD
如果要通过并行化集合来创建RDD,需要针对程序中的集合,调用SparkContext的parallelize()方法。Spark会将集合中的数据拷贝到集群上去,形成一个分布式的数据集合,也就是一个RDD。相当于是,集合中的部分数据会到一个节点上,而另一部分数据会到其他节点上。然后就可以用并行的方式来操作这个分布式数据集合,即RDD。 调用parallelize()时,有一个重要的参数可以指定,就是要将集合切分成多少个partition。Spark会为每一个partition运行一个task来进行处理。Spark官方的建议是,为集群中
的每个CPU创建2~4个partition。Spark默认会根据集群的情况来设置partition的数量。但是也可以在调用parallelize()方法时,传入第二个参数,来设置RDD的partition数量。
比如parallelize(arr, 10) // 案例:1到10累加求和 ###java实现
package cn.spark.study.core; import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function2; /**
* 并行化集合创建RDD
*
* @author bcqf
*
*/ public class ParallelizeCollection {
public static void main(String[] args) {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("ParallelizeCollection").setMaster("local"); // 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf); // 要通过并行化集合的方式创建RDD,那么就调用SparkContext以及其子类,的parallelize()方法
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
JavaRDD<Integer> numberRDD = sc.parallelize(numbers); // 执行reduce算子操作
// 相当于,先进行1 + 2 = 3;然后再用3 + 3 = 6;然后再用6 + 4 = 10...以此类推;
int sum = numberRDD.reduce(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer num1, Integer num2) throws Exception {
// TODO Auto-generated method stub
return num1 + num2;
} });
//输入累加和
System.out.println("1-10的累加和:" + sum); // 关闭JavaSparkContext
sc.close();
}
} ###scala实现
package cn.spark.study.core import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object ParallelizeCollection { def main(args: Array[String]) {
val conf = new SparkConf().setAppName("ParallelizeCollection").setMaster("local"); val sc = new SparkContext(conf) val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) val numberRDD = sc.parallelize(numbers, 5) val sum = numberRDD.reduce(_ + _) println("1-10的累加和:" + sum)
} }
3、使用本地文件和HDFS创建RDD
Spark是支持使用任何Hadoop支持的存储系统上的文件创建RDD的,比如说HDFS、Cassandra、HBase以及本地文件。通过调用SparkContext的textFile()方法,可以针对本地文件或HDFS文件创建RDD。 有几个事项是需要注意的:
1、如果是针对本地文件的话,如果是在windows上本地测试,windows上有一份文件即可;如果是在spark集群上针对linux本地文件,那么需要将文件拷贝到所有worker节点上。
2、Spark的textFile()方法支持针对目录、压缩文件以及通配符进行RDD创建。
3、Spark默认会为hdfs文件的每一个block创建一个partition,但是也可以通过textFile()的第二个参数手动设置分区数量,只能比block数量多,不能比block数量少。 -------------------案例:文件字数统计 ;本地文件------------------- ##java实现
package cn.spark.study.core; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2; /**
* 使用本地文件创建RDD
* 案例:统计文本文件字数
* @author bcqf
*
*/ public class LocalFile {
public static void main(String[] args) {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("LocalFile").setMaster("local"); // 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf); // 调用SparkContext以及其子类的textFile()方法,针对本地文件创建RDD
JavaRDD<String> lines = sc.textFile("D://spark.txt"); // 统计文本文件内的字数; Function<String, Integer> :String是接收类型,Integer是返回类型
JavaRDD<Integer> lineLength = lines.map(new Function<String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(String v1) throws Exception {
return v1.length();
} });
//Function2<T1, T2, R> ; call(T1 v1, T2 v2)
int count = lineLength.reduce(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); System.out.println("文字总数是:" + count); // 关闭JavaSparkContext
sc.close();
} } -------------------案例:文件字数统计 ;HDFS文件------------------- ##java实现
package cn.spark.study.core; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2; /**
* 使用HDFS文件创建RDD
* 案例:统计文本文件字数
* @author bcqf
*
*/ public class HDFSFile {
public static void main(String[] args) {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("HDFSFile"); // 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf); // 调用SparkContext以及其子类的textFile()方法,针对HDFS文件创建RDD
JavaRDD<String> lines = sc.textFile("hdfs://spark1:9000/spark.txt"); // 统计文本文件内的字数
JavaRDD<Integer> lineLength = lines.map(new Function<String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(String v1) throws Exception {
return v1.length();
} }); int count = lineLength.reduce(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); System.out.println("文字总数是:" + count); // 关闭JavaSparkContext
sc.close();
} } [root@spark1 java]# cat hdfs_file.sh #运行脚本
/usr/local/spark/bin/spark-submit \
--class cn.spark.study.core.HDFSFile \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
/usr/local/spark-study/java/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \ ##打maven包-->上传-->运行 -------------------案例:文件字数统计 ;本地文件------------------- ##scala实现
package cn.spark.study.core import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object LocalFile {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("LocalFile").setMaster("local") val sc = new SparkContext(conf) val lines = sc.textFile("D://spark.txt", 1)
val count = lines.map {line => line.length() }.reduce(_ + _) println("file's count is: " + count) }
} -------------------案例:文件字数统计 ;HDFS文件------------------- ##scala实现
package cn.spark.study.core import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object HDFSFile {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("HDFSFile") val sc = new SparkContext(conf) val lines = sc.textFile("hdfs://spark1:9000/spark.txt", 1)
val count = lines.map {line => line.length() }.reduce(_ + _) println("file's count is: " + count) }
} [root@spark1 scala]# cat hdfs_file.sh #运行脚本
/usr/local/spark/bin/spark-submit \
--class cn.spark.study.core.HDFSFile \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
/usr/local/spark-study/scala/spark-study-scala.jar \ ##打jar包(spark-study-scala.jar)-->上传-->运行
5、创建RDD(集合、本地文件、HDFS文件)的更多相关文章
- 26.Spark创建RDD集合
打开eclipse创建maven项目 pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:x ...
- 02、创建RDD(集合、本地文件、HDFS文件)
Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD:使用本地文件创建RDD:使用HDFS文件创建RDD. 1.并行化集合 如果要通过并行化集合来创建RDD,需要针对程序中 ...
- Spark练习之创建RDD(集合、本地文件),RDD持久化及RDD持久化策略
Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 ...
- Hadoop HDFS编程 API入门系列之从本地上传文件到HDFS(一)
不多说,直接上代码. 代码 package zhouls.bigdata.myWholeHadoop.HDFS.hdfs5; import java.io.IOException; import ja ...
- 【HDFS API编程】从本地拷贝文件,从本地拷贝大文件,拷贝HDFS文件到本地
接着之前继续API操作的学习 CopyFromLocalFile: 顾名思义,从本地文件拷贝 /** * 使用Java API操作HDFS文件系统 * 关键点: * 1)create Configur ...
- 【HDFS API编程】查看HDFS文件内容、创建文件并写入内容、更改文件名
首先,重点重复重复再重复: /** * 使用Java API操作HDFS文件系统 * 关键点: * 1)创建 Configuration * 2)获取 FileSystem * 3)...剩下的就是 ...
- hdfs创建删除文件和文件夹
在 hadoop 中,基于 Linux 命令可以给 hdfs 创建文件和文件夹,或者删除文件和文件夹 创建文件的命令为: hadoop fs -touch /file.txt 创建文件夹的命令为: h ...
- [Hive]使用HDFS文件夹数据创建Hive表分区
描写叙述: Hive表pms.cross_sale_path建立以日期作为分区,将hdfs文件夹/user/pms/workspace/ouyangyewei/testUsertrack/job1Ou ...
- Hadoop之HDFS文件操作常有两种方式(转载)
摘要:Hadoop之HDFS文件操作常有两种方式,命令行方式和JavaAPI方式.本文介绍如何利用这两种方式对HDFS文件进行操作. 关键词:HDFS文件 命令行 Java API HD ...
随机推荐
- K-th occurrence HDU - 6704 (SA, 主席树)
大意: 给定串$s$, $q$个询问$(l,r,k)$, 求子串$s[l,r]$的第$k$次出现位置. 本来是个简单签到题, 可惜比赛的时候还没学$SA$...... 好亏啊 相同的子串在$SA$中是 ...
- Django model反向关联名称的方法(转)
原文:https://www.jb51.net/article/152825.htm
- maven一些简单常用却容易记混的命令参数-U -e -B
install 命令完成了项目编译.单元测试.打包功能,同时把打好的可执行jar包(war包或其它形式的包)布署到本地maven仓库,但没有布署到远程Maven私服仓库: deploy 命令完成了项目 ...
- python 内置函数和匿名函数
内置函数 截止到python版本3.6.2,现在python一共为我们提供了68个内置函数. Built-in Functions abs() dict() help() min() ...
- FLV 数据封装格式
https://www.cnblogs.com/chyingp/p/flv-getting-started.html https://blog.csdn.net/ai2000ai/article/de ...
- SR开启时LOG_MODE必须是normal
SR开启时LOG_MODE必须是normal 需要一个初始化备份,
- windows下oracle数据库报错ORA-12705解决方法
转自:http://blog.sina.com.cn/s/blog_16eaf6b940102x66q.html 有个朋友,他们那边windows虚拟机重启后,数据库不能起来报错ORA-12705无法 ...
- spark 机器学习 knn原理(一)
1.knnK最近邻(k-Nearest Neighbor,KNN)分类算法,在给定一个已经做好分类的数据集之后,k近邻可以学习其中的分类信息,并可以自动地给未来没有分类的数据分好类.我们可以把用户分 ...
- Mongodb数据存储优缺点
相对于Mysql来说 在项目设计的初期,我当时有了这样的想法,同时也是在满足下面几个条件的情况下来选择最终的nosql方案的: 1.需求变化频繁:开发要更加敏捷,开发成本和维护成本要更低,要能够快速地 ...
- SQL注入是什么?如何防止?
SQL注入是什么?如何防止? SQL注入是一种注入攻击,可以执行恶意SQL语句.下面本篇文章就来带大家了解一下SQL注入,简单介绍一下防止SQL注入攻击的方法,希望对大家有所帮助. 什么是SQL注入? ...