Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge
题目连接:
http://www.codeforces.com/contest/609/problem/E
Description
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
Input
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Output
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
Sample Input
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
Sample Output
9
8
11
8
8
8
9
Hint
题意
给你一个图,n点m边。对于每个边,问你包含这条边的最小生成树是多少。
题解:
先生成一个最小生成树,加入一条边,可能会产生一个环,那么求这个环的最小值即可,
这个用倍增就行,就和求次小生成树一模一样。
今天typora终于可以用搜狗输入法了,我发现终端打开都用不了搜狗输入法,真奇怪呀。
代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 400050
ll n,m;
ll dp[N],mm[N],fu[N][21],mx[N][21];
ll tot,last[N];
struct Edge
{
ll from,to,val,s;
bool operator < (const Edge&b)
{return val<b.val;}
}a[N],edges[N];
template<typename T>void read(T&x)
{
ll k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void read_char(char &c)
{while(!isalpha(c=getchar())&&c!=EOF);}
void AddEdge(ll x,ll y,ll z)
{
edges[++tot]=Edge{x,y,z,last[x]};
last[x]=tot;
}
ll gf(ll x,ll *f)
{
if (x==f[x])return x;
return f[x]=gf(f[x],f);
}
ll MST(Edge *edges)
{
static ll f[N]; static Edge a[N];
for(ll i=1;i<=m;i++)a[i]=edges[i];
ll num=0,sum=0;
sort(a+1,a+m+1);
for(ll i=1;i<=n;i++)f[i]=i;
for(ll i=1;i<=m;i++)
{
Edge e=a[i];//
ll fx=gf(e.from,f),fy=gf(e.to,f);
if (fx!=fy)//
{
f[fx]=fy;
num++;
sum+=e.val;
AddEdge(e.to,e.from,e.val);
AddEdge(e.from,e.to,e.val);
}
if (num==n-1)break;
}
return sum;
}
void dfs(ll x,ll pre)
{
dp[x]=dp[pre]+1;
fu[x][0]=pre;
for(ll i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (e.to==pre)continue;
mx[e.to][0]=e.val;
dfs(e.to,x);
}
}
void init_ST(ll n)
{
mm[0]=-1;
for(ll i=1;i<=n;i++) mm[i]=(i&(i-1))==0?mm[i-1]+1:mm[i-1];
for(ll i=1;i<=20;i++)
for(ll j=1;j<=n;j++)
{
fu[j][i]=fu[fu[j][i-1]][i-1];
mx[j][i]=max(mx[j][i-1],mx[fu[j][i-1]][i-1]);
}
}
ll get_max(ll x,ll y)
{
ll ans=0;
if (dp[x]<dp[y])swap(x,y);
for(ll i=mm[dp[x]-dp[y]];i>=0;i--)
if (dp[fu[x][i]]>=dp[y])
{
ans=max(ans,mx[x][i]);
x=fu[x][i];
}
if (x==y)return ans;
for(ll i=mm[dp[x]-1];i>=0;i--)
if (fu[x][i]!=fu[y][i])
{
ans=max(ans,mx[x][i]);
ans=max(ans,mx[y][i]);
x=fu[x][i];
y=fu[y][i];
}
ans=max(ans,mx[x][0]);
ans=max(ans,mx[y][0]);
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
read(n); read(m);
for(ll i=1;i<=m;i++)
{
ll x,y,z;
read(x); read(y); read(z);
a[i]=Edge{x,y,z,0};
}
ll sum=MST(a);
dfs(1,0);
init_ST(n);
for(ll i=1;i<=m;i++)
{
ll ans=sum-get_max(a[i].from,a[i].to)+a[i].val;
printf("%lld\n",ans);
}
}
Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增的更多相关文章
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- cf609E Minimum Spanning Tree For Each Edge (kruskal+倍增Lca)
先kruskal求出一个最小生成树,然后对于每条非树边(a,b),从树上找a到b路径上最大的边,来把它替换掉,就是包含这条边的最小生成树 #include<bits/stdc++.h> # ...
- Minimum spanning tree for each edge(倍增LCA)
https://vjudge.net/contest/320992#problem/J 暑期训练的题. 题意:给你一个n个点,m条边的无向图.对于每一条边,求包括该边的最小生成树. 思路:首先想到求一 ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
随机推荐
- 【转载】C++ STL priority_queue用法
priority_queue 对于基本类型的使用方法相对简单.他的模板声明带有三个参数,priority_queue<Type, Container, Functional> Type 为 ...
- Unicode 和utf-8的转换以及深拷贝和浅拷贝的区别
必须掌握的点 一. (内存)Unicode二进制字符>>>>>>编码(encode)>>>>>>(硬盘)utf-8二进制字符 ( ...
- Makefile(三)
在平时使用中,可以使用以下的makefile来编译单独的代码 src = $(wildcard *.c) obj = $(patsubst %.c, %.o, $(src)) CC = gcc CFL ...
- [python]@cached_property缓存装饰器
cached_property缓存装饰器 class cached_property(object): """ Decorator that converts a met ...
- java 网络文件下载(并命中文名)
public void download(HttpServletRequest request, HttpServletResponse response){ //获取服务器文件 String fil ...
- redis 字符串数据(string)
Redis 字符串数据类型的相关命令用于管理 redis 字符串值,基本语法如下: 语法 redis 127.0.0.1:6379> COMMAND KEY_NAME 实例 redis 127. ...
- QObject 的拷贝构造和赋值操作
QOject 中没有提供一个拷贝构造函数和赋值操作符给外界使用,其实拷贝构造和赋值的操作都是已经声明了的,但是它们被使用了Q_DISABLE_COPY () 宏放在了private区域.因此所有继承自 ...
- Java-JPDA 概述
JPDA:Java 平台调试架构(Java Platform Debugger Architecture) 它是 Java 虚拟机为调试和监控虚拟机专门提供的一套接口. 一.JPDA https:// ...
- Twisted框架学习
Twisted是用Python实现的基于事件驱动的网络引擎框架,是python中一个强大的异步IO库.理解twisted的一个前提是弄清楚twisted中几个核心的概念: reactor, Proto ...
- Winform运行外部控制台程序,并在程序结束后执行其他动作
ProcessStartInfo psi = new ProcessStartInfo(); psi.FileName = @"程序名"; psi.Arguments = @&qu ...