使用cublas 矩阵库函数实现矩阵相乘
2014-08-10
cublas中执行矩阵乘法运算的函数
首先要注意的是cublas使用的是以列为主的存储方式,和c/c++中的以行为主的方式是不一样的。处理方法可参考下面的注释代码
// SOME PRECAUTIONS:
// IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
// WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
// The reason is explained as follows: // CUBLAS library uses column-major storage, but C/C++ use row-major storage.
// When passing the matrix pointer to CUBLAS, the memory layout alters from
// row-major to column-major, which is equivalent to an implict transpose. // In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
// C = A * B, we can't use the input order like cublasSgemm(A, B) because of
// implict transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
// If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
// multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
// is a column-based cublas matrix, which means C(T) in C/C++, we need extra
// transpose code to convert it to a row-based C/C++ matrix. // To solve the problem, let's consider our desired result C, a row-major matrix.
// In cublas format, it is C(T) actually (becuase of the implict transpose).
// C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
// happen to be C/C++ matrice B and A (still becuase of the implict transpose)!
// We don't need extra transpose code, we only need alter the input order!
//
// CUBLAS provides high-performance matrix multiplication.
// See also:
// V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
// in Proc. 2008 ACM/IEEE Conf. on Superconducting (SC '08),
// Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
//
小例子C++中:
A矩阵:0 3 5 B矩阵:1 1 1
0 0 4 1 1 1
1 0 0 1 1 1
现在要求C = A*B
C++中的结果
C矩阵:8 8 8
4 4 4
1 1 1
在cublas中:变成以行为主
A矩阵:0 0 1 B矩阵:1 1 1
3 0 0 1 1 1
5 4 0 1 1 1
在cublas中求C2=B*A
结果如下:C2在cublas中以列为主
惯性思维,先把结果用行为主存储好理解:
C2矩阵:8 4 1
8 4 1
8 4 1
在cublas实际是一列存储的,结果如下:
C2矩阵:8 8 8
4 4 4
1 1 1
此时在cublas中B*A的结果与C++中A*B结果一样,使用cublas时只需改变下参数的位置即可得到想要的结果。
cublas<t>gemm()
cublasStatus_t cublasSgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
intm, intn, intk,
const float*alpha,
const float*A, intlda,
const float*B, intldb,
const float*beta,
float*C, intldc);
cublasStatus_t cublasDgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
intm, intn, intk,
const double*alpha,
const double*A, intlda,
const double*B, intldb,
const double*beta,
double*C, intldc);
cublasStatus_t cublasCgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
intm, intn, intk,
constcuComplex *alpha,
constcuComplex *A, intlda,
constcuComplex *B, intldb,
constcuComplex *beta,
cuComplex *C, intldc);
cublasStatus_t cublasZgemm(cublasHandle_t handle,
cublasOperation_t transa, cublasOperation_t transb,
intm, intn, intk,
constcuDoubleComplex *alpha,
constcuDoubleComplex *A, intlda,
constcuDoubleComplex *B, intldb,
constcuDoubleComplex *beta,
cuDoubleComplex *C, intldc);
参数含义可参考下面的信息:


使用cublas中cublasSgemm实现简单的矩阵相乘代码如下:
头文件:matrix.h
// SOME PRECAUTIONS:
// IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B,
// WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)!
// The reason is explained as follows: // CUBLAS library uses column-major storage, but C/C++ use row-major storage.
// When passing the matrix pointer to CUBLAS, the memory layout alters from
// row-major to column-major, which is equivalent to an implict transpose. // In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication
// C = A * B, we can't use the input order like cublasSgemm(A, B) because of
// implict transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T).
// If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not
// multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C
// is a column-based cublas matrix, which means C(T) in C/C++, we need extra
// transpose code to convert it to a row-based C/C++ matrix. // To solve the problem, let's consider our desired result C, a row-major matrix.
// In cublas format, it is C(T) actually (becuase of the implict transpose).
// C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T)
// happen to be C/C++ matrice B and A (still becuase of the implict transpose)!
// We don't need extra transpose code, we only need alter the input order!
//
// CUBLAS provides high-performance matrix multiplication.
// See also:
// V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra,"
// in Proc. 2008 ACM/IEEE Conf. on Superconducting (SC '08),
// Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11.
// #include <stdio.h>
#include <stdlib.h> //cuda runtime
#include <cuda_runtime.h>
#include <cublas_v2.h> //包含的库
#pragma comment (lib,"cudart")
#pragma comment (lib,"cublas") //使用这个宏就可以很方便的将我们习惯的行为主的数据转化为列为主的数据
//#define IDX2C(i,j,leading) (((j)*(leading))+(i)) typedef struct _matrixSize // Optional Command-line multiplier for matrix sizes
{
unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC;
} sMatrixSize; cudaError_t matrixMultiply(float *h_C, const float *h_A, const float *h_B,int devID, sMatrixSize &matrix_size);
CPP文件:matrix.cpp
#include "matrix.h"
cudaError_t matrixMultiply(float *h_C, const float *h_A, const float *h_B,int devID, sMatrixSize &matrix_size){
float *dev_A = NULL;
float *dev_B = NULL;
float *dev_C = NULL;
float *h_CUBLAS = NULL;
cudaDeviceProp devicePro;
cudaError_t cudaStatus;
cudaStatus = cudaGetDeviceProperties(&devicePro, devID);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"cudaGetDeviceProperties returned error code %d, line(%d)\n", cudaStatus, __LINE__);
goto Error;
}
// allocate device memory for matrices dev_A 、 dev_B and dev_C
unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA;
unsigned int mem_size_A = sizeof(float) * size_A;
unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB;
unsigned int mem_size_B = sizeof(float) * size_B;
unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC;
unsigned int mem_size_C = sizeof(float) * size_C;
//cudaMalloc dev_A
cudaStatus = cudaMalloc( (void**)&dev_A, mem_size_A);
if(cudaStatus != cudaSuccess){
fprintf(stderr, "cudaMalloc dev_A return error code %d, line(%d)\n", cudaStatus, __LINE__);
goto Error;
}
//cudaMalloc dev_B
cudaStatus = cudaMalloc( (void**)&dev_B, mem_size_B);
if(cudaStatus != cudaSuccess){
fprintf(stderr, "cudaMalloc dev_B return error code %d, line(%d)\n", cudaStatus, __LINE__);
goto Error;
}
//cudaMalloc dev_C
cudaStatus = cudaMalloc( (void**)&dev_C, mem_size_C);
if(cudaStatus != cudaSuccess){
fprintf(stderr, "cudaMalloc dev_C return error code %d, line(%d)\n", cudaStatus, __LINE__);
goto Error;
}
// allocate host memory for result matrices h_CUBLAS
h_CUBLAS = (float*)malloc(mem_size_C);
if( h_CUBLAS == NULL && size_C > ){
fprintf(stderr, "malloc h_CUBLAS error, line(%d)\n",__LINE__);
goto Error;
}
/*
copy the host input vector h_A, h_B in host memory
to the device input vector dev_A, dev_B in device memory
*/
//cudaMemcpy h_A to dev_A
cudaStatus = cudaMemcpy(dev_A, h_A, mem_size_A, cudaMemcpyHostToDevice);
if( cudaStatus != cudaSuccess){
fprintf(stderr,"cudaMemcpy h_A to dev_A return error code %d, line(%d)", cudaStatus, __LINE__);
goto Error;
}
//cudaMemcpy h_B to dev_B
cudaStatus = cudaMemcpy(dev_B, h_B, mem_size_B, cudaMemcpyHostToDevice);
if( cudaStatus != cudaSuccess){
fprintf(stderr,"cudaMemcpy h_B to dev_B returned error code %d, line(%d)", cudaStatus, __LINE__);
goto Error;
}
//CUBLAS version 2.0
{
cublasHandle_t handle;
cublasStatus_t ret;
ret = cublasCreate(&handle);
if(ret != CUBLAS_STATUS_SUCCESS){
fprintf(stderr, "cublasSgemm returned error code %d, line(%d)", ret, __LINE__);
goto Error;
}
cudaEvent_t start;
cudaEvent_t stop;
cudaStatus = cudaEventCreate(&start);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Falied to create start Event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
goto Error;
}
cudaStatus = cudaEventCreate(&stop);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Falied to create stop Event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
goto Error;
}
//recode start event
cudaStatus = cudaEventRecord(start,NULL);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Failed to record start event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
goto Error;
}
//matrix multiple A*B, beceause matrix is column primary in cublas, so we can change the input
//order to B*A.the reason you can see the file matrix.h
float alpha = 1.0f;
float beta = 0.0f;
//ret = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiHB, matrix_size.uiHA, matrix_size.uiWA,
//&alpha, dev_B, matrix_size.uiWB, dev_A, matrix_size.uiWA, &beta, dev_C, matrix_size.uiWA);
ret = cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiHA, matrix_size.uiHB, matrix_size.uiWB,
&alpha, dev_A, matrix_size.uiWA, dev_B, matrix_size.uiWB, &beta, dev_C, matrix_size.uiWB);
if(ret != CUBLAS_STATUS_SUCCESS){
fprintf(stderr,"cublasSgemm returned error code %d, line(%d)\n", ret, __LINE__);
}
printf("cublasSgemm done.\n");
//recode stop event
cudaStatus = cudaEventRecord(stop,NULL);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Failed to record stop event (error code %s)!\n",cudaGetErrorString( cudaStatus ) );
goto Error;
}
//wait for the stop event to complete
cudaStatus = cudaEventSynchronize(stop);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Failed to synchronize on the stop event (error code %s)!\n", cudaGetErrorString( cudaStatus ) );
goto Error;
}
float secTotal = 0.0f;
cudaStatus = cudaEventElapsedTime(&secTotal ,start, stop);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"Failed to get time elapsed between event (error code %s)!\n", cudaGetErrorString( cudaStatus ) );
goto Error;
}
//copy result from device to host
cudaStatus = cudaMemcpy(h_CUBLAS, dev_C, mem_size_C, cudaMemcpyDeviceToHost);
if(cudaStatus != cudaSuccess){
fprintf(stderr,"cudaMemcpy dev_C to h_CUBLAS error code %d, line(%d)!\n", cudaStatus, __LINE__);
goto Error;
}
}
for(int i = ; i < matrix_size.uiWC; i++){
for(int j = ; j < matrix_size.uiHC; j++){
printf("%f ", h_CUBLAS[ i*matrix_size.uiWC + j]);
}
printf("\n");
}
/*
//change the matrix from column primary to rows column primary
for(int i = 0; i<matrix_size.uiWC; i++){
for(int j = 0; j<matrix_size.uiHC; j++){
int at1 = IDX2C(i,j,matrix_size.uiWC); //element location in rows primary
int at2 = i*matrix_size.uiWC +j; //element location in column primary
if(at1 >= matrix_size.uiWC*matrix_size.uiHC || at2 >= matrix_size.uiWC*matrix_size.uiHC)
printf("transc error \n");
h_C[ at1 ] = h_CUBLAS[ at2 ];
}
}
*/
/*
for(int i = 0; i<matrix_size.uiWC; i++){
for(int j = 0; j<matrix_size.uiHC; j++){
//int at1 = IDX2C(i,j,matrix_size.uiWC); //element location in rows primary
int at2 = i*matrix_size.uiWC +j; //element location in column primary
//if(at1 >= matrix_size.uiWC*matrix_size.uiHC || at2 >= matrix_size.uiWC*matrix_size.uiHC)
//printf("transc error \n");
h_C[ at2 ] = h_CUBLAS[ at2 ];
}
}
*/
Error:
cudaFree(dev_A);
cudaFree(dev_B);
cudaFree(dev_C);
free(h_CUBLAS);
dev_A = NULL;
dev_B = NULL;
dev_C = NULL;
h_CUBLAS = NULL;
return cudaStatus;
}
cudaError_t reduceEdge(){
cudaError_t cudaStatus = cudaSuccess;
Error:
return cudaStatus;
}
使用cublas 矩阵库函数实现矩阵相乘的更多相关文章
- <矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置>
//矩阵的基本操作:矩阵相加,矩阵相乘,矩阵转置 #include<stdio.h> #include<stdlib.h> #define M 2 #define N 3 #d ...
- NumPy 矩阵库函数
章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基于数值区间创建数组 NumPy 数组切 ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)
1287 矩阵乘法 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description 小明最近在为线性代数而头疼, ...
- 二维KMP - 求字符矩阵的最小覆盖矩阵 - poj 2185
Milking Grid Problem's Link:http://poj.org/problem?id=2185 Mean: 给你一个n*m的字符矩阵,让你求这个字符矩阵的最小覆盖矩阵,输出这个最 ...
- Matlab中矩阵的平方和矩阵中每个元素的平方介绍
该文章讲述了Matlab中矩阵的平方和矩阵中每个元素的平方介绍. 设t = [2 4 2 4] 则>> t.^2 ans = 4 164 16 而>> t^2 ans = ...
- C语言经典算法 - 多维矩阵转一维矩阵的代码
下边内容内容是关于C语言经典算法 - 多维矩阵转一维矩阵的内容,应该能对码农也有好处. #include <stdio.h>#include <stdlib.h>int mai ...
- Jacobian矩阵、Hessian矩阵和Newton's method
在寻找极大极小值的过程中,有一个经典的算法叫做Newton's method,在学习Newton's method的过程中,会引入两个矩阵,使得理解的难度增大,下面就对这个问题进行描述. 1, Jac ...
- #161: 给定n*n由0和1组成的矩阵,如果矩阵的每一行和每一列的1的数量都是偶数,则认为符合条件。 你的任务就是检测矩阵是否符合条件
试题描述 给定n*n由0和1组成的矩阵,如果矩阵的每一行和每一列的1的数量都是偶数,则认为符合条件. 你的任务就是检测矩阵是否符合条件,或者在仅改变一个矩阵元素的情况下能否符合条件. "改变 ...
随机推荐
- MySQL中information_schema数据库是干啥的
大家在安装或使用MYSQL时,会发现除了自己安装的数据库以外,还有一个 information_schema数据库.information_schema数据库是做什么用的呢,使用WordPress博客 ...
- kotlin之高阶函数
高阶函数是一种特殊的函数,它接受函数作为参数,或者返回一个函数 import java.awt.geom.Area fun main(arg: Array<String>) { val m ...
- Maven 引入外部依赖
pom.xml 的 dependencies 列表列出了我们的项目需要构建的所有外部依赖项. 要添加依赖项,我们一般是先在 src 文件夹下添加 lib 文件夹,然后将你工程需要的 jar 文件复制到 ...
- 002-多线程-JUC集合-List-CopyOnWriteArrayList
一.概述 CopyOnWriteArrayList是Java并发包中提供的一个并发容器,它是个线程安全且读操作无锁的ArrayList,写操作则通过创建底层数组的新副本来实现,是一种读写分离的并发策略 ...
- 【ABAP系列】SAP ABAP Break Point
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[ABAP系列]SAP ABAP Break P ...
- 阅读随笔 Spring、Mybatis
一.<Spring+Mybatis 企业应用实战>(第2版本) 本书讲解了Spring.Mybatis及Spring+MyBatis 工作中的常用方法,没有太深入的原理性讲解,介绍 “如何 ...
- 《精通并发与Netty》学习笔记(09 - Java中流的概念)
Java中流的概念 java程序通过流来完成输入/输出.流是生产或消费信息的抽象.流通过java的输入/输出与物理设备链接.尽管与它们链接的物理设备不尽相同,所有流的行为具有同样的方式.这样,相同的输 ...
- Django--Form组件使用出现的小bug记录--username拿到None
form过滤代码: class LoginForm(forms.Form): username = forms.CharField(max_length=20,min_length=3,label=' ...
- 顺序表的基本操作【c语言】【创建、插入、删除、输出】
作为数据结构初学者,上课时对一些知识点掌握得不是很透彻,所以利用课余时间通过微博平台总结所学知识,加深对知识的见解,记录学习历程便于后需要时参考. #include<stdio.h> #i ...
- idea配置git的步骤
第一次git到GitHub过程 打开到项目 这样就不用再用git Bash敲命令了