多元正态分布

正态分布大家都非常熟悉了,多元正态分布就是多维数据的正态分布,其概率密度函数为

上式为 x 服从 k 元正态分布,x 为 k 维向量;|Σ| 代表协方差矩阵的行列式

二维正态分布概率密度函数为钟形曲面,等高线是椭圆线族,并且二维正态分布的两个边缘分布都是一维正态分布,如图

np.random.multivariate_normal

生成一个服从多元正态分布的数组      【适用于 python3,但在 python2 中也能用】

multivariate_normal(mean, cov, size=None, check_valid=None, tol=None) 

mean:均值,维度为1,必选参数;

cov:协方差矩阵,必选参数;

size: 指定生成矩阵的维度,若size=(1, 1, 2),则输出的矩阵的 shape 即形状为 1X1X2XN(N为mean的长度);

check_valid:可取值 warn,raise以及ignore;

tol:检查协方差矩阵奇异值时的公差,float类型;

示例

mean = (1, 2)
cov = [[1, 0], [0, 1]]
x = np.random.multivariate_normal(mean, cov, (2, 2), 'raise') # 2x2x2
print(x)

直接生成数组

scipy.stats.multivariate_normal

生成一个多元正态分布

def __call__(self, mean=None, cov=1, allow_singular=False, seed=None)

示例-生成多元正态分布

import numpy as np
import scipy.stats as st
import matplotlib.pylab as plt x, y = np.mgrid[-1:1:.01, -1:1:.01]
pos = np.empty(x.shape + (2,))
pos[:, :, 0] = x; pos[:, :, 1] = y
rv = st.multivariate_normal([0, 0], [[1, 0], [0, 1]]) # 生成多元正态分布
print(rv) # <scipy.stats._multivariate.multivariate_normal_frozen object at 0x08EDDDB0> 只是生成了一个对象,并没有生成数组
plt.contourf(x, y, rv.pdf(pos))
plt.show()

示例-概率密度函数

x = np.linspace(0, 5, 10, endpoint=False)       # 样本
y = st.multivariate_normal.pdf(x, mean=2.5, cov=.5) # 样本的概率密度函数 plt.plot(x, y)
plt.show()

生成了概率密度曲线

可用方法

pdf(x, mean=None, cov=1) :概率密度函数

logpdf(x, mean=None, cov=1) :概率密度函数日志

rvs(mean=None, cov=1) :从多元正态分布中随机抽取样本

entropy() :计算多元法线的微分熵

参考资料:

https://www.cnblogs.com/21207-iHome/p/8039741.html  多元正态分布

https://blog.csdn.net/zch1990s/article/details/80005940  np.random.multivariate_normal方法浅析

https://www.cnblogs.com/wanghui-garcia/p/10763418.html   scipy.stats.multivariate_normal的使用

multivariate_normal 多元正态分布的更多相关文章

  1. Multivariate normal distribution | 多元正态分布

    现在终于需要用到了.

  2. scipy.stats.multivariate_normal的使用

    参考:https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.stats.multivariate_normal.html ...

  3. np.random.multivariate_normal方法浅析

    从多元正态分布中抽取随机样本. 多元正态分布,多正态分布或高斯分布是一维正态分布向更高维度的推广.这种分布由其均值和协方差矩阵来确定.这些参数类似于一维正态分布的平均值(平均值或"中心&qu ...

  4. Hotelling T2检验和多元方差分析

    1.1 Hotelling T2检验 Hotelling T2检验是一种常用多变量检验方法,是单变量检验的自然推广,常用于两组均向量的比较. 设两个含量分析为n,m的样本来自具有公共协方差阵的q维正态 ...

  5. SPSS数据分析—多元方差分析

    之前的单因素方差分析和多因素方差分析,都在针对一个因变量,而实际工作中,经常会碰到多个因变量的情况,如果单纯的将其拆分为多个单因变量的做法不妥,需要使用多元方差分析或因子分析 多元方差分析与一元方差分 ...

  6. 正态分布(Normal distribution)又名高斯分布(Gaussian distribution)

    正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学.物理及project等领域都很重要的概率分布,在统计学的很多方面有着重大的影 ...

  7. 多元高斯分布(The Multivariate normal distribution)

    在数据建模时,经常会用到多元高斯分布模型,下面就这个模型的公式并结合它的几何意义,来做一个直观上的讲解. 1, 标准高斯函数 高斯函数标准型: $f(x) = \frac{1}{\sqrt{2π}}e ...

  8. ML—R常用多元统计分析包(持续更新中……)

    基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面要综述的包主要分为以下几个部分: 1) 多元数据可视化(Visualising multivaria ...

  9. 使用正态分布变换(Normal Distributions Transform)进行点云配准

    正态分布变换算法是一个配准算法,它应用于三维点的统计模型,使用标准优化技术来确定两个点云间的最优的匹配,因为其在配准过程中不利用对应点的特征计算和匹配,所以时间比其他方法快.下面是PCL官网上的一个例 ...

随机推荐

  1. JavaWeb_(Hibernate框架)Hibernate中重要的api

    Hibernate中重要的api Configuration SessionFactory Session(重点) Transaction 在Dao层中UserDao.java使用Hibernate向 ...

  2. JavaWeb-SpringSecurity自定义登陆页面

    系列博文 项目已上传至guthub 传送门 JavaWeb-SpringSecurity初认识 传送门 JavaWeb-SpringSecurity在数据库中查询登陆用户 传送门 JavaWeb-Sp ...

  3. 2.6.2 XML配置:使用testNG进行并发多浏览器测试

    测试类 1 @Parameters("browser") 定义browser参数. 在测试执行过程中,browser参数具体值由XML文件进行传递. 1 2 3 4 5 6 7 8 ...

  4. JETSON TK1 ~ 安装Cuda和OpenCV3

    一:安装Cuda6.5 1:下载安装包 Cuda6.5 2.在TK1上安装软件包: cd ~/Downloads sudo dpkg -i cuda-repo-l4t-r21.3-6-5-prod_6 ...

  5. laravel中跟据某个特定顺序去排序查出来的数据:FIND_IN_SET

    //返回有顺序的客户id $customer_ids = $customer->bespeakTime($uid); $res = Customer::with('customer_indust ...

  6. ShareX的使用

    给截图设置边框 https://github.com/ShareX/ShareX/issues/2509 TaskSettings-->Image-->Effects-->image ...

  7. java 获取本地 mac 地址

    主要参考:Java获取本机MAC地址/IP地址/主机名 做的更改: 1.我的windows是中文版,程序中获取mac时是按照physical address 获取的,添加上"物理地址&quo ...

  8. 微信小程序之条件判断

    前文: 今天踩了一下午的坑,但是确实很简单的问题. 我说一下需求:扫描商品的二维码,从而判断,同一个二维码不可多次扫描: 点击扫一扫 会在灰色区域展示 扫描的商品信息,比如商品名称,商品码等,但是我们 ...

  9. vue生命周期updated的触发时机之debug过程中发现的firefox问题

    现象描述: 断点位置1 谷歌debug的过程: 火狐debug的过程: 只要在改变数据之后有断点停顿,就会先去执行updated函数 断点位置2 此时火狐和谷歌是一样的效果,但是执行顺序是不一致的 谷 ...

  10. Cortex-M3 异常返回值EXC_RETURN

    [EXC_RETURN] 在进入异常服务程序后,硬件自动更新LR的值为特殊的EXC_RETURN.当程序从异常服务程序返回,把这个EXC_RETURN值送往PC时,就会启动处理器的异常中断返回序列.因 ...