ECCV-2010 Tutorial: Feature Learning for Image Classification

Organizers

Kai Yu (NEC Laboratories America, kyu@sv.nec-labs.com),

Andrew Ng (Stanford University, ang@cs.stanford.edu)

Place & Time: Creta Maris Hotel, Crete, Greece, 9:00 – 13:00, September 5th, 2010

Course Material and Software

The quality of visual features is crucial for a wide range of computer vision topics, e.g., scene classification, object recognition, and object detection, which are very popular in recent computer vision venues. All these image classification tasks have traditionally relied on hand-crafted features to try to capture the essence of different visual patterns. Fundamentally, a long-term goal in AI research is to build intelligent systems that can automatically learn meaningful feature representations from a massive amount of image data. We believe a comprehensive coverage of the latest advances on image feature learning will be of broad interest to ECCV attendees.

The primary objective of this tutorial is to introduce a paradigm of feature learning from unlabeled images, with an emphasis on applications to supervised image classification. We provide a comprehensive coverage of recently developed algorithms for learning powerful sparse nonlinear features, and showcase their superior performance on a number of challenging image classification benchmarks, including Caltech101, PASCAL, and the recent large-scale problem ImageNet. Furthermore, we describe deep learning and a variety of deep learning algorithms, which learn rich feature hierarchies from unlabeled data and can capture complex invariance in visual patterns.

Syllabus

  • Overview: Image Classification Overview
  • Part I: State-of-the-art Image Classification Methods
    • Discriminative Classifiers using BoW Representation and Spatial Pyramid Matching
    • Alternative Methods: Generative Models and Part-based Models
  • Part II: Image Classification using Sparse Coding
    • Self-taught Learning
    • BoW Representation from a Coding Perspective
    • Feature Learning using Sparse Coding
    • Alternative Sparse Coding Methods: Sparse RBM, Sparse Autoencoder, etc.
  • Part III: Advanced Topics on Image Classification using Sparse Coding
    • Intuitions, Topic-model View, and Geometric View
    • Local Coordinate Coding: Theory and Applications
    • Recent Advances in Sparse Coding for Image Classification
  • Part IV: Learning Feature Hierarchies and Deep Learning
    • Feature Hierarchies and the Importance of Depth
    • Deep Belief Networks (DBNs) and Convolution DBNs
    • Learning Invariance (ICA, SFA, etc.)
    • Other Deep Architectures
    • Application to Image Classification
  • Open questions and discussion

Course Material and Software

The slides:

Software available online:

  • Matlab toolbox for sparse coding using the feature-sign algorithm [link]
  • Matlab codes for image classification using sparse coding on SIFT features [link]
  • Matlab codes for a fast approximation to Local Coordinate Coding [link]

Relevant Tutorials

Biographies

Kai Yu is a Department Head at NEC Labs America, where he leads the research in image understanding, video surveillance, and data mining. He served as Session Chair at ICML 2009 and Area Chair at ICML 2010, and received the best paper runner-up award in PKDD-05. His team won the Winner Prizes in PASCAL VOC Challenge 2009 and the ImageNet Large-scale Visual Recognition Challenge 2010, and was among the top performers in TRECVID Video Event Detection Evaluations in 2008 and 2009. He received Ph.D in CS from University of Munich, Germany, in 2004.

Andrew Ng is an Associate Professor of Computer Science at Stanford University. His research interests include machine learning, robotics, and broad-competence AI. His group has won best paper/best student paper awards at ACL, CEAS, 3DRR and ICML. He is also a recipient of the Alfred P. Sloan Fellowship, and the IJCAI 2009 Computers and Thought award.

from: http://ufldl.stanford.edu/eccv10-tutorial/

图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification的更多相关文章

  1. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  2. 转:无监督特征学习——Unsupervised feature learning and deep learning

    http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio clas ...

  3. 译:Local Spectral Graph Convolution for Point Set Feature Learning-用于点集特征学习的局部谱图卷积

    标题:Local Spectral Graph Convolution for Point Set Feature Learning 作者:Chu Wang, Babak Samari, Kaleem ...

  4. [转] 无监督特征学习——Unsupervised feature learning and deep learning

    from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio ...

  5. 利用K-means聚类分类,进行特征学习

    这只是老师安排的一个实验,准备过程中遇到各种问题,现在贴出来供大家参考,是Andrew Ng参与的研究, 论文依据如下,第二篇是一篇相关的论文, Learning Feature Representa ...

  6. Deep Learning 学习随记(四)自学习和非监督特征学习

    接着看讲义,接下来这章应该是Self-Taught Learning and Unsupervised Feature Learning. 含义: 从字面上不难理解其意思.这里的self-taught ...

  7. Deep Learning论文笔记之(一)K-means特征学习

    Deep Learning论文笔记之(一)K-means特征学习 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文,但老感 ...

  8. UFLDL深度学习笔记 (三)无监督特征学习

    UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较 ...

  9. 论文笔记:Deep feature learning with relative distance comparison for person re-identification

    这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不 ...

随机推荐

  1. C#绘制工行Logo

    using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...

  2. 如何教你在NIPS会议上批量下载历年的pdf文档(另附04~14年NIPS论文下载链接)

    如何获得NIPS会议上批量下载的链接? NIPS会议下载网址:http://papers.nips.cc/ a.点击打开上述网站,进入某一年的所有会议,例如2014年,如下图 b.然后对着当前网页点击 ...

  3. 新装Centos常见问题及解决方案

    1.可以ping通,但无法通过ssh连接虚拟机的解决方案 虚拟机上装了一个 Linux 玩玩, 但在启动 Linux 后,在 Windows 中通过 Xshell 以 SSH 方式连接到 Linux ...

  4. Web前端一种动态样式语言-- Less

    变量 变量允许我们单独定义一系列通用的样式,然后在需要的时候去调用.所以在做全局样式调整的时候我们可能只需要修改几行代码就可以了. // LESS @color: #4D926F; #header { ...

  5. 配置Symfony2

    安装成功后打开server php app/console server:run 127.0.0.1:8000 然后在浏览器输入localhost/8000/config.php进行配置 1.date ...

  6. OS X 使用技巧——不用鼠标就能打开应用程序

    如果要打开的应用程序没有保留在Dock栏里,一种快速启动它的办法是按住Control+Space键后再输入应用程序的名称.按Control+Space键会开启聚光灯(Spotlight)搜索工具,它会 ...

  7. 了解Git

           对于计算机软件初学者来说Git并没有太多了解, 以前没有接触过,但是老师说对其进行了解,也没有什么概念,只有通过上网进行了解 . 了解到的大概内容如下:                 ...

  8. 【BZOJ】【1069】【SCOI2007】最大土地面积

    计算几何/旋转卡壳 从已知点中选出四个使得选出的四边形面积最大,很明显我们应该在凸包上搞. 我一开始的思路是:枚举 i ,找到 i 的对锺点cur1,这两个点将凸包分成了两半,我们在左半中枚举一个 j ...

  9. Reactor构架模式

    http://www.cnblogs.com/hzbook/archive/2012/07/19/2599698.html Reactor框架是ACE各个框架中最基础的一个框架,其他框架都或多或少地用 ...

  10. DSP中的cmd文件

    一.CMD文件 链接命令文件(Link Command Files),以后缀.cmd结尾,简称CMD文件. CMD文件的两大功能是指示存储空间和分配段到存储空间. 在编写CMD文件时,主要采用MEMO ...