Dancing Links
Dancing Links用来解决如下精确匹配的问题:

选择若干行使得每一列恰好有一个1。Dancing Links通过对非零元素建立双向十字循环链表。上面的例子建立的链表如下所示:

计算的时候使用搜索的策略。每次选出1最少的一列,比如c,然后选择这一列中的某一行,比如r,(r,c)=1,然后r中所有1所在的列,那些其他行这些列有1的都删掉(这些行不会在r算入答案后也在答案里,否则就有某些列多于一个1出现)。然后这就变成一个规模更小的问题,继续搜索。无解时要回溯。
class CDancingLinks
{
protected:
struct DancingLinksNode
{
DancingLinksNode* left;
DancingLinksNode* right;
DancingLinksNode* down;
DancingLinksNode* up;
int col;
int row;
}; typedef DancingLinksNode Node; int *m_columnEleNumbers;
int m_colNumber;
int m_rowNumber;
Node* m_pool;
Node** m_head;
int m_curUsePoolIndex; void _Remove(Node* cur)
{
--m_columnEleNumbers[cur->col];
for(Node* p=cur->down;p!=cur;p=p->down)
{
p->left->right=p->right;
p->right->left=p->left;
}
} void _Resume(Node* cur)
{
++m_columnEleNumbers[cur->col];
for(Node* p=cur->up;p!=cur;p=p->up)
{
p->left->right=p;
p->right->left=p;
}
} bool _SearchSolution(const int depth,std::vector<int> &solution)
{
Node* p=_GetNode();
if(p->left==p) return true; int Min=m_rowNumber+;
int MinColumnIndex=;
for(Node* q=p->left;q!=p;q=q->left)
{
if(m_columnEleNumbers[q->col]<Min)
{
Min=m_columnEleNumbers[q->col];
MinColumnIndex=q->col;
}
} for(Node* q=_GetNode(MinColumnIndex)->down;q!=_GetNode(MinColumnIndex);q=q->down)
{
_Remove(q);
solution.push_back(q->row);
for(Node* rr=q->right;rr!=q;rr=rr->right) _Remove(rr);
if(_SearchSolution(depth+,solution)) return true;
for(Node* rr=q->left;rr!=q;rr=rr->left) _Resume(rr);
solution.pop_back();
_Resume(q);
} return false;
} Node* _GetNode(int id) { return m_pool+id; } void _ReleaseMemory()
{
if(m_columnEleNumbers)
{
delete[] m_columnEleNumbers;
m_columnEleNumbers=nullptr;
} if(m_pool)
{
delete[] m_pool;
m_pool=nullptr;
}
if(m_head)
{
delete[] m_head;
m_head=nullptr;
}
} public: CDancingLinks():m_colNumber(-),m_rowNumber(-),
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr) {} /***
列下标为[1,Column]
***/
CDancingLinks(const int Column,const int Row):
m_columnEleNumbers(nullptr),m_pool(nullptr),m_head(nullptr)
{
SetSize(Column,Row);
} /***
列下标为[1,Column]
***/
void SetSize(const int Column,const int Row)
{
m_colNumber=Column;
m_rowNumber=Row; _ReleaseMemory(); m_columnEleNumbers=new int[m_colNumber+];
m_pool=new Node[m_colNumber*(m_rowNumber+)+];
m_head=new Node*[m_rowNumber+];
Clear();
} void Clear()
{
for(int i=;i<=m_colNumber;++i)
{
Node* cur=_GetNode(i);
cur->left=((i==m_colNumber)?_GetNode():_GetNode(i+));
cur->right=((==i)?_GetNode(m_colNumber):_GetNode(i-));
m_columnEleNumbers[i]=; cur->up=cur->down=_GetNode(i);
cur->col=i;
cur->row=;
}
for(int i=;i<=m_rowNumber;++i) m_head[i]=NULL;
m_curUsePoolIndex=m_colNumber+;
} ~CDancingLinks()
{
_ReleaseMemory();
} void AddElement(const int row,const int col)
{ Node* cur=m_pool+(m_curUsePoolIndex++); cur->up=_GetNode(col);
cur->down=_GetNode(col)->down;
m_pool[col].down->up=cur;
m_pool[col].down=cur; if(m_head[row]==NULL)
{
m_head[row]=cur->left=cur->right=cur;
}
else
{
cur->left=m_head[row]->left;
cur->right=m_head[row];
m_head[row]->left->right=cur;
m_head[row]->left=cur;
}
++m_columnEleNumbers[col];
cur->col=col;
cur->row=row;
} bool GetSolution(std::vector<int> &Solution)
{
return _SearchSolution(,Solution);
}
};
Dancing Links的更多相关文章
- Dancing Links and Exact Cover
1. Exact Cover Problem DLX是用来解决精确覆盖问题行之有效的算法. 在讲解DLX之前,我们先了解一下什么是精确覆盖问题(Exact Cover Problem)? 1.1 Po ...
- 跳跃的舞者,舞蹈链(Dancing Links)算法——求解精确覆盖问题
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合 ...
- ZOJ 3209 Treasure Map (Dancing Links)
Treasure Map Time Limit: 2 Seconds Memory Limit: 32768 KB Your boss once had got many copies of ...
- HUST 1017 - Exact cover (Dancing Links 模板题)
1017 - Exact cover 时间限制:15秒 内存限制:128兆 自定评测 5584 次提交 2975 次通过 题目描述 There is an N*M matrix with only 0 ...
- Dancing Links初学记
记得原来备战OI的时候,WCX大神就研究过Dancing Links算法并写了一篇blog.后来我还写了个搜索策略的小文章( http://www.cnblogs.com/pdev/p/3952279 ...
- 【转】Dancing Links题集
转自:http://blog.csdn.net/shahdza/article/details/7986037 POJ3740 Easy Finding [精确覆盖基础题]HUST1017 Exact ...
- 【转】Dancing Links精确覆盖问题
原文链接:http://sqybi.com/works/dlxcn/ (只转载过来一部分,全文请看原文,感觉讲得很好~)正文 精确覆盖问题 解决精确覆盖问题 舞蹈步骤 效率分析 ...
- POJ 3074 Sudoku (Dancing Links)
传送门:http://poj.org/problem?id=3074 DLX 数独的9*9的模板题. 具体建模详见下面这篇论文.其中9*9的数独怎么转化到精确覆盖问题,以及相关矩阵行列的定义都在下文中 ...
- HDU5046 Airport dancing links 重复覆盖+二分
这一道题和HDU2295是一样 是一个dancing links重复覆盖解决最小支配集的问题 在给定长度下求一个最小支配集,只要小于k就行 然后就是二分答案,每次求最小支配集 只不过HDU2295是浮 ...
随机推荐
- Java中的json数据类型操作
package com.ss1.json; import java.util.ArrayList; import java.util.HashMap; import java.util.List; i ...
- Oracle的分页查询
--1:无ORDER BY排序的写法.(效率最高)--(经过测试,此方法成本最低,只嵌套一层,速度最快!即使查询的数据量再大,也几乎不受影响,速度依然!) SELECT * FROM (SELECT ...
- 三、Java基础---------关于继承、构造函数、静态代码块执行顺序示例讲解
在上节博客中曾提到过类的继承,这篇文章主要是介绍类的继承.构造函数以及静态代码块的执行顺序. 首先接着分析在黑马基础测试中的一个关于继承的题目,题目描述如下: 声明类Person,包含2个成员变量:n ...
- 在MVC里面使用Response.Redirect方法后记得返回EmptyResult
在ASP.NET MVC中我们很多时候都会在拦截器和Controller中直接使用Response.Redirect方法做跳转,但是实际上Response.Redirect方法执行后ASP.NET并不 ...
- 【Ah20160703】咏叹 By C_SUNSHINE
咏叹 By C_SUNSHINE [试题描述] Salroey拿到了一个1~n的排列A,她想对这个排列进行冒泡排序: counter=0 While A不是升序的 counter=counter+1 ...
- 在Javaweb中使用Scala
Java 是一门比较优秀的编程语言, 其最大功劳是建立非常繁荣的JVM平台生态.不过 Java 语法比较麻烦,写过 C, Python 的人总是想使用简洁的语法,又希望利用上 Java 平台的强大,因 ...
- inux设备驱动归纳总结(五):2.操作硬件——IO内存【转】
本文转载自:http://blog.chinaunix.net/uid-25014876-id-80627.html inux设备驱动归纳总结(五):2.操作硬件——IO内存 xxxxxxxxxxxx ...
- docker RESTful API
https://docs.docker.com/engine/reference/api/docker_remote_api/
- error:could not open D:\java\jre1.8\lib\i386\jvm.cfg
复制一份jre到eclipse的目录下就可以了.
- 苹果app审核的规则总结
1.1为App Store开发程序,开发者必须遵守 Program License Agreement (PLA).人机交互指南(HIG)以及开发者和苹果签订的任何协议和合同.以下规则和示例旨在帮助开 ...