题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2768

题意:给出一个无向图,每个点有一个值0或者1。现在重新设置每个点的值0或者1。设重新设置后的点与原来的点有x个点的值不一样;重新设置后有y条边(u,v)使得u和v的值不同。最小化x+y。

思路:若初始值为1则原点向其连边;否则其向汇点连边。对于边(u,v),u和v的值不同,则连边。求最小割。若左侧被割到,则表示将其改为0;右侧被割到,则表示将其改为1;中间被割到则表示两边冲突。

struct node
{
    int v,cap,next;
};

node edges[N];
int head[N],e;

void add(int u,int v,int cap)
{
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap)
{
    add(u,v,cap);
    add(v,u,0);
}

int pre[N],h[N],num[N],cur[N];

int Maxflow(int s,int t,int n)
{
    int i;
    for(i=0;i<=n;i++) h[i]=num[i]=0,cur[i]=head[i];
    int ans=0,u=s,v,x,Min;

    while(h[u]<n)
    {
        if(u==t)
        {
            Min=INF+1;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                x=cur[i];
                if(edges[x].cap<Min) Min=edges[x].cap,v=i;
            }
            ans+=Min; u=v;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                x=cur[i];
                edges[x].cap-=Min;
                edges[x^1].cap+=Min;
            }
        }
        for(i=cur[u];i!=-1;i=edges[i].next)
        {
            v=edges[i].v;
            if(edges[i].cap>0&&h[u]==h[v]+1) break;
        }
        if(i!=-1)
        {
            cur[u]=i;
            pre[edges[i].v]=u;
            u=edges[i].v;
        }
        else
        {
            if(--num[h[u]]==0) break;
            cur[u]=head[u];
            x=n;
            for(i=head[u];i!=-1;i=edges[i].next)
            {
                if(edges[i].cap>0) x=min(x,h[edges[i].v]);
            }
            h[u]=x+1;
            num[x+1]++;
            if(u!=s) u=pre[u];
        }
    }
    return ans;
}

int s,t,n,m,a[N];

int main()
{
    clr(head,-1);
    RD(n,m);
    s=0; t=n+1;
    int i,x,y;
    FOR1(i,n)
    {
        RD(a[i]);
        if(a[i]) Add(s,i,1);
        else Add(i,t,1);
    }
    FOR1(i,m)
    {
        RD(x,y);
        if(a[x]==a[y]) continue;
        if(a[x]) Add(x,y,1);
        else Add(y,x,1);
    }
    PR(Maxflow(s,t,t+1));
}

BZOJ 2768 冠军调查(最小割)的更多相关文章

  1. BZOJ 2768: [JLOI2010]冠军调查 最小割

    2768: [JLOI2010]冠军调查 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=2768 Description 一年一度的欧洲足 ...

  2. 2768: [JLOI2010]冠军调查( 最小割 )

    最小割... 怎么乱搞都可以 -------------------------------------------------------------------------------- #inc ...

  3. 【BZOJ-2768】冠军调查 最小割

    2768: [JLOI2010]冠军调查 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 971  Solved: 661[Submit][Status ...

  4. [BZOJ 2768] 冠军调查

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2768 Solution: 一道比较基础的最大流的题目 一般看到将点分为两类的题目就要往网 ...

  5. JLOI2010 冠军调查 最小割

    var b,f:..] of longint; s,t,i,j,n,m,x,y:longint; l,h:..]of longint; a:..,..]of longint; procedure bf ...

  6. bzoj 1497 最大获利 - 最小割

    新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研 ...

  7. [BZOJ 2127] happiness 【最小割】

    题目链接:BZOJ - 2127 题目分析 首先,每个人要么学文科,要么学理科,所以可以想到是一个最小割模型. 我们就确定一个人如果和 S 相连就是学文,如果和 T 相连就是学理. 那么我们再来确定建 ...

  8. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  9. BZOJ 2561 最小生成树 | 网络流 最小割

    链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...

随机推荐

  1. 夺命雷公狗---DEDECMS----33dedecms自定义搜索以及分页功能完成

    我们现在要开始实现模版里面的搜索功能了,我们先找要做出一个检索提交表单,如下所示: 只要我们点击生成之后我们的表单就获取到了,可以直接拿生成好的html表单拿来用来测试下.. 将他嵌入首页的模版文件, ...

  2. sql2005镜像实现

    -- ===========================================    -- 无论是主体服务器.镜像服务器, 还是见证服务器    -- 除特别说明外,均需要保证下面的操作 ...

  3. Windows下USB磁盘开发系列三:枚举系统中U盘、并获取其设备信息

    前面我们介绍了枚举系统中的U盘盘符(见<Windows下USB磁盘开发系列一:枚举系统中U盘的盘符>).以及获取USB设备的信息(见<Windows下USB磁盘开发系列二:枚举系统中 ...

  4. loadruner报错:Step download timeout(120 seconds)的一个解决方法

    一个网友问了我一个问题如下: loadruner报错:Error -27728: Step download timeout (120 seconds) 如何解决 语 法检查通过,但是在并发执行一个查 ...

  5. android 下的技巧

    1.删除屏幕的手势锁定 adb shell #登录 su $切换到su用户(手机需要root) cd /data/system #切换目录 rv gesture.key # 删除锁屏文件,然后进去的时 ...

  6. 关于Win7 64位 mysql 5.7下载安装问题

    1.从官网下载mysql: 网址:http://dev.mysql.com/downloads/mysql/ 这是我们要找的,win7 64位 点击下载: 出现如图所示,我们不必要登录注册,点击红线内 ...

  7. 在centos6.5上面mount微软系统上安装ftp服务器

    ---恢复内容开始--- 现在用虚拟机开发linux软件,发现虚拟机提供的共享文件夹不能很好地工作,表现为: 1.我在windows上面修改了文件内容,在linux里面发现文件内容没有变化,需要做些等 ...

  8. php number_format()保留小数点后几位

    [PHP_保留两位小数的相关函数] php保留两位小数并且四舍五入 Php代码   1     $num = 123213.666666;  2     echo sprintf("%.2f ...

  9. Educational Codeforces Round 13 D:Iterated Linear Function(数论)

    http://codeforces.com/contest/678/problem/D D. Iterated Linear Function Consider a linear function f ...

  10. git 本地分支与远程分支关联的一种方法

    github上已经有master分支 和dev分支 在本地 git checkout -b dev 新建并切换到本地dev分支 git pull origin dev 本地分支与远程分支相关联 在本地 ...