题目链接

题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少。

思路 :先二分半径r,半平面交向内推进r。模板题

 #include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
const double eps = 1e- ; using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
}
double dist(double x,double y)
{
return sqrt(x*x+y*y) ;
}
bool solve(double r)
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
node t1,t2,t ;
t.x = p[i+].y-p[i].y ;
t.y = p[i].x-p[i+].x ;
double k = r/dist(t.x,t.y) ;
t.x *= k ;
t.y *= k ;
t1.x = t.x+p[i].x ;
t1.y = t.y+p[i].y ;
t2.x = t.x+p[i+].x ;
t2.y = t.y+p[i+].y ;
getline(t1,t2) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
if(newn == )
return false ;
else return true ;
//求多边形核的面积
// double s = 0 ;
// for(int i = 1 ; i <= newn ; i++)
// s += newp[i].x*newp[i+1].y-newp[i].y*newp[i+1].x ;
// return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
while(scanf("%d",&n)!=EOF && n)
{
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
guizhenghua();
p[n+] = p[] ;
double high = ,low = 0.0,mid ;
while(high-low >= eps)
{
mid = (low+high)/2.0 ;
if(solve(mid)) low = mid ;
else high = mid ;
}
printf("%lf\n",high) ;
}
return ;
}

POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)的更多相关文章

  1. POJ 3525 Most Distant Point from the Sea [半平面交 二分]

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5153   ...

  2. POJ 3525 Most Distant Point from the Sea (半平面交)

    Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...

  3. POJ 3525 Most Distant Point from the Sea

    http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...

  4. POJ 3525 Most Distant Point from the Sea (半平面交+二分)

    Most Distant Point from the Sea Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3476   ...

  5. LA 3890 Most Distant Point from the Sea(半平面交)

    Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...

  6. POJ 3525 Most Distant Point from the Sea 二分+半平面交

    题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...

  7. POJ3525 Most Distant Point from the Sea(半平面交)

    给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...

  8. POJ 3384 Feng Shui(半平面交向内推进求最远点对)

    题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...

  9. poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】

    <题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...

随机推荐

  1. 使用工厂bean和Utility Schema定义集合

    工厂bean是实现了beanFactory接口的bean,也可以继承AbstractFactoryBean,主要是用于在给定属性参数之后自动创建一个bean对象. 我们在使用基本集合标记定义集合时,不 ...

  2. 关于table元素的认识

    表格是网页上最常见的元素,但是,现在对很多刚入行的前端们那是谈table色变.那是为啥?这是表格的框架的简单.明了.在传统的网页中使用没有边框的表格来排版是非常流行.在web标准逐渐深入设计领域以后, ...

  3. Git操作指南(2) —— Git Gui for Windows的建库、克隆、上传

    本教程将讲述:gitk的Git Gui的部分常用功能和使用方法,包括:建库.克隆(clone).上传(push).下载(pull - fetch).合并(pull - merge). ———————— ...

  4. discuz分类信息地区联动菜单字段

    1 = 河南省 1.1 = 郑州市 1.1.1 = 中原区 1.1.2 = 二七区 1.1.3 = 管城区 1.1.4 = 金水区 1.1.5 = 上街区 1.1.6 = 惠济区 1.1.7 = 巩义 ...

  5. 通过firefox+ProxySelector+dtunnel_lite实现代理上网

    通过firefox+ProxySelector+dtunnel_lite实现代理上网 dtunnel_lite:http://dog-tunnel.tk/下载lite版本就可以 远端:./dtunne ...

  6. 最近对python颇有兴趣

    因为最近租的房子到期了,于是在豆瓣小组找房子,萌生利用python爬虫去抓取小组的房源信息. 最近2个小玩意准备做一下,mark 一下 1.豆瓣租房小组Python爬虫抓取 2.51job 职位抓取

  7. LinuxC 文件与目录 打印文件操作错误信息

    打印文件操作错误信息 在进行文件操作是,会遇到权限不足.找不到文件等错误,可以在程序中设置错误捕捉语句并显示错误.错误捕捉和错误输出使用用错误号和streero实现. 函数原型 : char *str ...

  8. JAVA内部类(转)

    源出处:JAVA内部类 在java语言中,有一种类叫做内部类(inner class),也称为嵌入类(nested class),它是定义在其他类的内部.内部类作为其外部类的一个成员,与其他成员一样, ...

  9. C#如何设置Listview的行高-高度

    Winform窗口中,控件listview是无法设置行高的. 以加入一个imagelist(图片列表控件)实现行高的设置. ImageList imageList = new ImageList(); ...

  10. 关于Liferay所有的能够进行自定义和扩展的东西的总结

    非常超级什么有用的东西,amazing. 虽然不是宝宝写的. Fantastic Extension Points - And Where to Find Them