POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少。
思路 :先二分半径r,半平面交向内推进r。模板题
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
const double eps = 1e- ; using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
}
double dist(double x,double y)
{
return sqrt(x*x+y*y) ;
}
bool solve(double r)
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
node t1,t2,t ;
t.x = p[i+].y-p[i].y ;
t.y = p[i].x-p[i+].x ;
double k = r/dist(t.x,t.y) ;
t.x *= k ;
t.y *= k ;
t1.x = t.x+p[i].x ;
t1.y = t.y+p[i].y ;
t2.x = t.x+p[i+].x ;
t2.y = t.y+p[i+].y ;
getline(t1,t2) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
if(newn == )
return false ;
else return true ;
//求多边形核的面积
// double s = 0 ;
// for(int i = 1 ; i <= newn ; i++)
// s += newp[i].x*newp[i+1].y-newp[i].y*newp[i+1].x ;
// return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
while(scanf("%d",&n)!=EOF && n)
{
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
guizhenghua();
p[n+] = p[] ;
double high = ,low = 0.0,mid ;
while(high-low >= eps)
{
mid = (low+high)/2.0 ;
if(solve(mid)) low = mid ;
else high = mid ;
}
printf("%lf\n",high) ;
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】
<题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...
随机推荐
- 使用工厂bean和Utility Schema定义集合
工厂bean是实现了beanFactory接口的bean,也可以继承AbstractFactoryBean,主要是用于在给定属性参数之后自动创建一个bean对象. 我们在使用基本集合标记定义集合时,不 ...
- 关于table元素的认识
表格是网页上最常见的元素,但是,现在对很多刚入行的前端们那是谈table色变.那是为啥?这是表格的框架的简单.明了.在传统的网页中使用没有边框的表格来排版是非常流行.在web标准逐渐深入设计领域以后, ...
- Git操作指南(2) —— Git Gui for Windows的建库、克隆、上传
本教程将讲述:gitk的Git Gui的部分常用功能和使用方法,包括:建库.克隆(clone).上传(push).下载(pull - fetch).合并(pull - merge). ———————— ...
- discuz分类信息地区联动菜单字段
1 = 河南省 1.1 = 郑州市 1.1.1 = 中原区 1.1.2 = 二七区 1.1.3 = 管城区 1.1.4 = 金水区 1.1.5 = 上街区 1.1.6 = 惠济区 1.1.7 = 巩义 ...
- 通过firefox+ProxySelector+dtunnel_lite实现代理上网
通过firefox+ProxySelector+dtunnel_lite实现代理上网 dtunnel_lite:http://dog-tunnel.tk/下载lite版本就可以 远端:./dtunne ...
- 最近对python颇有兴趣
因为最近租的房子到期了,于是在豆瓣小组找房子,萌生利用python爬虫去抓取小组的房源信息. 最近2个小玩意准备做一下,mark 一下 1.豆瓣租房小组Python爬虫抓取 2.51job 职位抓取
- LinuxC 文件与目录 打印文件操作错误信息
打印文件操作错误信息 在进行文件操作是,会遇到权限不足.找不到文件等错误,可以在程序中设置错误捕捉语句并显示错误.错误捕捉和错误输出使用用错误号和streero实现. 函数原型 : char *str ...
- JAVA内部类(转)
源出处:JAVA内部类 在java语言中,有一种类叫做内部类(inner class),也称为嵌入类(nested class),它是定义在其他类的内部.内部类作为其外部类的一个成员,与其他成员一样, ...
- C#如何设置Listview的行高-高度
Winform窗口中,控件listview是无法设置行高的. 以加入一个imagelist(图片列表控件)实现行高的设置. ImageList imageList = new ImageList(); ...
- 关于Liferay所有的能够进行自定义和扩展的东西的总结
非常超级什么有用的东西,amazing. 虽然不是宝宝写的. Fantastic Extension Points - And Where to Find Them