POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少。
思路 :先二分半径r,半平面交向内推进r。模板题
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h>
const double eps = 1e- ; using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
}
double dist(double x,double y)
{
return sqrt(x*x+y*y) ;
}
bool solve(double r)
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
node t1,t2,t ;
t.x = p[i+].y-p[i].y ;
t.y = p[i].x-p[i+].x ;
double k = r/dist(t.x,t.y) ;
t.x *= k ;
t.y *= k ;
t1.x = t.x+p[i].x ;
t1.y = t.y+p[i].y ;
t2.x = t.x+p[i+].x ;
t2.y = t.y+p[i+].y ;
getline(t1,t2) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
if(newn == )
return false ;
else return true ;
//求多边形核的面积
// double s = 0 ;
// for(int i = 1 ; i <= newn ; i++)
// s += newp[i].x*newp[i+1].y-newp[i].y*newp[i+1].x ;
// return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
while(scanf("%d",&n)!=EOF && n)
{
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
guizhenghua();
p[n+] = p[] ;
double high = ,low = 0.0,mid ;
while(high-low >= eps)
{
mid = (low+high)/2.0 ;
if(solve(mid)) low = mid ;
else high = mid ;
}
printf("%lf\n",high) ;
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea (半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- poj 3525 半平面交求多边形内切圆最大半径【半平面交】+【二分】
<题目链接> 题目大意:给出一个四面环海的凸多边形岛屿,求出这个岛屿中的点到海的最远距离. 解题分析: 仔细思考就会发现,其实题目其实就是让我们求该凸多边形内内切圆的最大半径是多少.但是, ...
随机推荐
- java 单例模式总结
单例模式的实现方式总结: 第一种方式:同步获取实例的方法,多线程安全,懒汉模式.在调用实例的时刻初始化. public class Singleton1 { private static Single ...
- 删除redo所有日志,数据库无法启动
半夜在itpub上看到有人发贴,说不小心删除了redo所有日志,导致数据库无法启动,因此模拟了一下. 如下: OS: Oracle Linux Server release 5.7 DB: O ...
- oracle 配置 oem
1.启动命令是[oracle@yoon ~]$ cd $ORACLE_HOME/bin [oracle@yoon ~]$ ./emctl start dbconsole 停止命令是[oracle@yo ...
- AppCan认为,移动APP开发不是技术活
很多粉丝反应,AppCan的文章太专业了,技术大大们毫不费劲,小白看的晕乎乎. 时代变了,5年前,AppCan的受众只有开发者.现在,政府高管.集团董事长.非技术类管理者.中小企业主.各行各业的管理者 ...
- (转)前端构建工具gulp入门教程
前端构建工具gulp入门教程 老婆婆 1.8k 2013年12月30日 发布 推荐 10 推荐 收藏 83 收藏,20k 浏览 本文假设你之前没有用过任何任务脚本(task runner)和命令行工具 ...
- AngularJs学习笔记-AngularJS权威教程学习笔记
AngularJS是什么? AngularJS是一种构建动态Web应用的结构化框架.主要用于构建单页面Web应用, 增加抽象级别,使构建交互式的现代Web应用变得更加简单. AngularJS使开发W ...
- OpenGl学习笔记3之模型变换、视图变换、投影变换、视口变换介绍
模型变换.视图变换.投影变换.视口变换介绍 opengl中存在四种变换,分别是模型变换,视图变换,投影变换,视口变换.这四种变换是图形渲染的基本操作,实质上这四种变换都是由矩阵乘法表示(这些操作都是由 ...
- 转载:JS快速获取图片宽高的方法
快速获取图片的宽高其实是为了预先做好排版样式布局做准备,通过快速获取图片宽高的方法比onload方法要节省很多时间,甚至一分钟以上都有可能,并且这种方法适用主流浏览器包括IE低版本浏览器. 我们一步一 ...
- 转载:Comet:基于 HTTP 长连接的“服务器推”技术
转自:http://www.ibm.com/developerworks/cn/web/wa-lo-comet/ 很多应用譬如监控.即时通信.即时报价系统都需要将后台发生的变化实时传送到客户端而无须客 ...
- Asp.net开启分布式事务管理
1.确保服务器分布式管理服务 Distributed Transcation Coordinator 有开启 2.使用分布式事务代码的项目中添加System.Transactions程序集的引用 3. ...