Eliminate the Conflict

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1315    Accepted Submission(s): 563
Problem Description
Conflicts are everywhere in the world, from the young to the elderly, from families to countries. Conflicts cause quarrels, fights or even wars. How wonderful the world will be if all conflicts can be eliminated.

Edward contributes his lifetime to invent a 'Conflict Resolution Terminal' and he has finally succeeded. This magic item has the ability to eliminate all the conflicts. It works like this:

If any two people have conflict, they should simply put their hands into the 'Conflict Resolution Terminal' (which is simply a plastic tube). Then they play 'Rock, Paper and Scissors' in it. After they have decided what they will play, the tube should be opened and no one will have the chance to change. Finally, the winner have the right to rule and the loser should obey it. Conflict Eliminated!

But the game is not that fair, because people may be following some patterns when they play, and if the pattern is founded by others, the others will win definitely.

Alice and Bob always have conflicts with each other so they use the 'Conflict Resolution Terminal' a lot. Sadly for Bob, Alice found his pattern and can predict how Bob plays precisely. She is very kind that doesn't want to take advantage of that. So she tells Bob about it and they come up with a new way of eliminate the conflict:

They will play the 'Rock, Paper and Scissors' for N round. Bob will set up some restricts on Alice.

But the restrict can only be in the form of "you must play the same (or different) on the ith and jth rounds". If Alice loses in any round or break any of the rules she loses, otherwise she wins.

Will Alice have a chance to win?
 
Input
The first line contains an integer T(1 <= T <= 50), indicating the number of test cases.

Each test case contains several lines.

The first line contains two integers N,M(1 <= N <= 10000, 1 <= M <= 10000), representing how many round they will play and how many restricts are there for Alice.

The next line contains N integers B
1,B
2, ...,B
N, where B
i represents what item Bob will play in the i
th round. 1 represents Rock, 2 represents Paper, 3 represents Scissors.

The following M lines each contains three integers A,B,K(1 <= A,B <= N,K = 0 or 1) represent a restrict for Alice. If K equals 0, Alice must play the same on A
th and B
th round. If K equals 1, she must play different items on Ath and Bthround.
 
Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is "yes" or "no" represents whether Alice has a chance to win.
 
Sample Input
2
3 3
1 1 1
1 2 1
1 3 1
2 3 1
5 5
1 2 3 2 1
1 2 1
1 3 1
1 4 1
1 5 1
2 3 0
 
Sample Output
Case #1: no
Case #2: yes

Hint

'Rock, Paper and Scissors' is a game which played by two person. They should play Rock, Paper or Scissors by their hands at the same time.
Rock defeats scissors, scissors defeats paper and paper defeats rock. If two people play the same item, the game is tied..

 
Source


题意:
Alice和Bob玩石头、剪刀、布,玩n局,Alice已知Bob的n局的出法,Bob给了Alice m个限制第i、j两次必须相同或不同,问Alice能否不输。


思路:
已知Bob的出法后,保证Alice不输,那每局Alice就有两种出法,问题就变为2-sat了,根据Alice每局的出法,给出限制后找到约束条件建边就够了。注意挖掘隐含的约束条件,如i、j相同,而Bob在i、j出法不同,那么Alice在i中的选择与在j中的选择只有一个交集,必须选择这个交集,选了其他的就错了。(我就卡在这个地方了)

代码:
#include <cstdio>
#include <cstring>
#define maxn 20005
#define MAXN 100005
using namespace std; int n,m,num,flag;
int bob[maxn];
int head[maxn];
int scc[maxn];
int vis[maxn];
int stack1[maxn];
int stack2[maxn];
struct edge
{
int v,next;
} g[MAXN];
int a[4][2]=
{
0,0,
1,2,
2,3,
1,3
}; void init()
{
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(scc,0,sizeof(scc));
stack1[0] = stack2[0] = num = 0;
flag = 1;
}
void addedge(int u,int v)
{
num++;
g[num].v = v;
g[num].next = head[u];
head[u] = num;
}
void dfs(int cur,int &sig,int &cnt)
{
if(!flag) return;
vis[cur] = ++sig;
stack1[++stack1[0]] = cur;
stack2[++stack2[0]] = cur;
for(int i = head[cur]; i; i = g[i].next)
{
if(!vis[g[i].v]) dfs(g[i].v,sig,cnt);
else
{
if(!scc[g[i].v])
{
while(vis[stack2[stack2[0]]] > vis[g[i].v])
stack2[0] --;
}
}
}
if(stack2[stack2[0]] == cur)
{
stack2[0] --;
++cnt;
do
{
scc[stack1[stack1[0]]] = cnt;
int tmp = stack1[stack1[0]];
if((tmp >n && scc[tmp - n] == cnt) || (tmp <= n && scc[tmp + n] == cnt)) // 注意这里的‘=’号
{
flag = false;
return;
}
}
while(stack1[stack1[0] --] != cur);
}
}
void Twosat()
{
int i,sig,cnt;
sig = cnt = 0;
for(i=0; i<n+n&&flag; i++)
{
if(!vis[i]) dfs(i,sig,cnt);
}
}
int main()
{
int i,j,t,u,v,k,test=0;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
init();
num=0;
for(i=1; i<=n; i++)
{
scanf("%d",&bob[i]);
}
for(i=1; i<=m; i++)
{
scanf("%d%d%d",&u,&v,&k);
if(k)
{
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u,v+n),addedge(v,u+n);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u,v),addedge(v+n,u+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u+n,v+n),addedge(v,u);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u+n,v),addedge(v+n,u);
}
else
{
if(bob[u]==bob[v])
{
addedge(u,v);
addedge(v,u);
addedge(u+n,v+n);
addedge(v+n,u+n);
}
else
{ //注意这里 只能唯一的选择一条边等价于不能选其他边
if(a[bob[u]][0]==a[bob[v]][0]) addedge(u+n,u),addedge(v+n,v);
if(a[bob[u]][0]==a[bob[v]][1]) addedge(u+n,u),addedge(v,v+n);
if(a[bob[u]][1]==a[bob[v]][0]) addedge(u,u+n),addedge(v+n,v);
if(a[bob[u]][1]==a[bob[v]][1]) addedge(u,u+n),addedge(v,v+n);
}
}
}
Twosat();
printf("Case #%d: ",++test);
if(flag) printf("yes\n");
else printf("no\n");
}
return 0;
}







 

hdu 4115 Eliminate the Conflict ( 2-sat )的更多相关文章

  1. HDU 4115 Eliminate the Conflict(2-sat)

    HDU 4115 Eliminate the Conflict pid=4115">题目链接 题意:Alice和Bob这对狗男女在玩剪刀石头布.已知Bob每轮要出什么,然后Bob给Al ...

  2. HDU 4115 Eliminate the Conflict(2-SAT)(2011 Asia ChengDu Regional Contest)

    Problem Description Conflicts are everywhere in the world, from the young to the elderly, from famil ...

  3. HDU 4115 Eliminate the Conflict

    2-SAT,拆成六个点. #include<cstdio> #include<cstring> #include<cmath> #include<stack& ...

  4. hdu 4115 石头剪子布(2-sat问题)

    /* 意甲冠军:石头剪子布,目前已知n周围bob会有什么,对alice限制.供u,v,w:设w=0说明a,b回合必须出的一样 否则,必须不一样.alice假设输一回合就输了,否则就赢了 解: 2-sa ...

  5. HDU 5783 Divide the Sequence(数列划分)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  6. HDU 5795 A Simple Nim(简单Nim)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  7. HDU 3496 Watch The Movie(看电影)

    HDU 3496 Watch The Movie(看电影) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] New sem ...

  8. HDU 5224 Tom and paper(最小周长)

    HDU 5224 Tom and paper(最小周长) Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d &a ...

  9. HDU 5868 Different Circle Permutation(burnside 引理)

    HDU 5868 Different Circle Permutation(burnside 引理) 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=586 ...

随机推荐

  1. ubuntu 11.04 源 更新不了,全显示ign、404

    原文地址:http://blog.csdn.net/enjio/article/details/11603373   ubuntu 11.04 源 更新不了 分类: 开发相关2013-09-12 14 ...

  2. C语言之复杂指针详解

    在<C陷阱与缺陷>第二章第一节中有这样一个声明: (*(void(*)())0)(): 看到这样的表达式估计让不少人都“不寒而栗”了吧,其实虽然看起来复杂,但是构造这类表达式其实只有一条简 ...

  3. linux下编译软件通用方法(memcached为例)

    1)到软件的官网或其他网站下载软件的源码包 2)解压源码包,并切换到源码目录中 3)使用./configure --help查询配置帮助,里面可能会有安装指南(Installation directo ...

  4. (一)线性回归与特征归一化(feature scaling)

    线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...

  5. 用Jquery Widgets Factory写自己的表格控件——AFGrid(支持增、删、改)

    一,Jquery Widget Factory介绍 官网地址 Demo:http://jqueryui.com/widget/ API:http://api.jqueryui.com/jQuery.w ...

  6. mysql的data数据库只有.frm 而.myd和.myi没有,使用正常

    正常 data目录下的数据库文件只要表结构文件frm文件...甚是不解  钻研过后知道 mysql的默认数据库引擎模式呗设置成了InnoDB innodb表没有没有MYD和.MYI,其数据文件对应于i ...

  7. swfupload浅谈

    首先,先介绍一个swfUplod吧. SWFUpload是一个客户端文件上传工具,最初由Vinterwebb.se开发,它通过整合flash与javascript技术为web开发者提供了一个具有丰富功 ...

  8. C# 对Excel文档打印时的页面设置

    1.对打印页面的朝向,页宽,页高进行设置 参考源码[1] using Excel = Microsoft.Office.Interop.Excel; Excel.Application tmpExce ...

  9. delphi TClientDataSet 保存到XML

    procedure ExPortNodeQuantifyComponent1(aCDS: TClientDataSet; aCurrNode: TXMLNode); var mStream: TMem ...

  10. Groovy获取json和xml数据

    如果是xml就用这个 // to read a node from your Response def grUtils = new com.eviware.soapui.support.GroovyU ...