Geometric Shapes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1243   Accepted: 524

Description

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

Input

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.

The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

Sample Output

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersections

Source

 
 
 
 
题目首先要
根据正方形给出的两个对角线的顶点,求另外两个顶点。
正方形,已知 (x0,y0) 和(x2,y2)  可以根据下列关系求(x1,y1),(x3,y3)
 
x1+x3 = x0+x2;
x1-x3  =  y2-y0;
y1+y3 =  y0-y2;
y1-y3 =  x0-x2;
 
矩形类似。
 
然后判断线段相交即可。
 
 
注意输入输出格式控制。
 
 
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//*判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= ;
} struct Node
{
char id;
int n;//点数
Point p[];
}node[];
bool cmp(Node a,Node b)
{
return a.id < b.id;
}
char str[];
bool check(Node a,Node b)
{
for(int i = ;i < a.n;i++)
for(int j = ;j < b.n;j++)
if(inter(Line(a.p[i],a.p[(i+)%a.n]),Line(b.p[j],b.p[(j+)%b.n])))
return true;
return false;
}
bool ff[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%s",str) == )
{
if(str[] == '.')break;
node[].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
//cout<<node[0].p[0].x<<" "<<node[0].p[0].y<<endl;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
// cout<<node[0].p[2].x<<" "<<node[0].p[2].y<<endl;
node[].p[].x = ((node[].p[].x+node[].p[].x)+(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)+(node[].p[].x-node[].p[].x))/;
node[].p[].x = ((node[].p[].x+node[].p[].x)-(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)-(node[].p[].x-node[].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
node[].p[].x = node[].p[].x + (node[].p[].x - node[].p[].x);
node[].p[].y = node[].p[].y + (node[].p[].y - node[].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[].n);
for(int i = ;i < node[].n;i++)
{
scanf(" (%lf,%lf)",&node[].p[i].x,&node[].p[i].y);
}
}
n = ;
while(scanf("%s",str)==)
{ //cout<<str<<endl;
if(str[] == '-')break;
node[n].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)+(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)+(node[n].p[].x-node[n].p[].x))/;
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)-(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)-(node[n].p[].x-node[n].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = node[n].p[].x + (node[n].p[].x - node[n].p[].x);
node[n].p[].y = node[n].p[].y + (node[n].p[].y - node[n].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[n].n);
for(int i = ;i < node[n].n;i++)
{
scanf(" (%lf,%lf)",&node[n].p[i].x,&node[n].p[i].y);
}
}
n++;
}
sort(node,node+n,cmp);
for(int i = ;i < n;i++)
{
printf("%c ",node[i].id);
memset(ff,false,sizeof(ff));
int cnt = ;
for(int j = ;j < n;j++)
if(i != j)
if(check(node[i],node[j]))
{
cnt++;
ff[j] = true;
}
if(cnt == )printf("has no intersections\n");
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
printf("%c\n",node[j].id);
break;
}
}
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt==)printf("%c ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
else
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt > )printf("%c, ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
} printf("\n");
}
}
 
 
 
 
 

POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)的更多相关文章

  1. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  2. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  3. 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

    题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...

  4. POJ 3449 Geometric Shapes --计算几何,线段相交

    题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...

  5. POJ 3449 Geometric Shapes

    判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...

  6. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

  7. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  8. TZOJ 2560 Geometric Shapes(判断多边形是否相交)

    描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...

  9. poj3449 Geometric Shapes【计算几何】

    含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板   Geometric Shapes Time Limit: 2000MS   Memory Limit: 655 ...

随机推荐

  1. LA 3902 Network

    人生第一道图论题啊,有木有 题意: 有一个树状网络,有一个原始服务器s,它的服务范围是k 问至少再放多少台服务范围是k的服务器才能使网络中的每个节点都被覆盖掉 解法: 我们以原始服务器为根将其转化成一 ...

  2. [swustoj 243] 又是一年CET46

    又是一年CET46(0243) 问题描述 CET46 成绩出来啦,一群学生在谈论他们的成绩.A说他的成绩比B高,B说他的成绩比C低,D说他的成绩和E一样…… 他们当中可能有人在说谎.你的任务就是判断是 ...

  3. 总结swift 1.2适配swift2.0遇到的改变

    swift1.2适配swift2.0 以下列举的是我在项目中遇到的需要修改的,基本常见的问题就没有罗列了. 1.find函数变成了为indexOf 2.sort变成了sortInPlace 3.sor ...

  4. 《C#高级编程》之泛型--1创建泛型类

    .NET自从2.0版本开始就支持泛型. 非泛型链表 闲话休提,马上来看下非泛型的简化链表类,它可以包含任意类型的对象. LinkedListNode.cs中: 在链表中,一个元素引用另一个元素,所以必 ...

  5. 分布式网站架构后续:zookeeper技术浅析

    Zookeeper是hadoop的一个子项目,虽然源自hadoop,但是我发现zookeeper脱离hadoop的范畴开发分布式框架的运用 越来越多.今天我想谈谈zookeeper,本文不谈如何使用z ...

  6. 【解题报告】[动态规划] RQNOJ PID5 / 能量项链

    原题地址:http://www.rqnoj.cn/problem/5 解题思路: 今天刚刚才知道了区间DP..Orz..本来以为是状态压缩DP,后来看到数据量才发现原来不是.后来参考了别人的题解.自己 ...

  7. 【转】在Source Insight中看Python代码

    原文网址:http://www.cnblogs.com/xuxm2007/archive/2010/09/02/1815695.html SI是个很强大的代码查看修改工具,以前用来看C,C++都是相当 ...

  8. RAC实例 表空间 维护

    先配置一下监听,这样我们就可以从客户端进行连接了. 我这里写了三种连接. 第一种是正常方式,一般都采用这种方式,后面的rac1和rac2 是方便测试.因为如果用第一种方式的话,客户端连哪个实例是随机的 ...

  9. $(function(){})和jQuery(function(){})

    $(function(){})和jQuery(function(){})有没有区别,群里的屌丝争吵起来,各自讲着各种理论大道理.但还是有人给出了简而有力的证明: 区分大小写(jQuery) 但jQue ...

  10. MySQL与Oracle 差异比较之六触发器

    触发器 编号 类别 ORACLE MYSQL 注释 1 创建触发器语句不同 create or replace trigger TG_ES_FAC_UNIT  before insert or upd ...