Geometric Shapes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1243   Accepted: 524

Description

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

Input

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.

The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

Sample Output

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersections

Source

 
 
 
 
题目首先要
根据正方形给出的两个对角线的顶点,求另外两个顶点。
正方形,已知 (x0,y0) 和(x2,y2)  可以根据下列关系求(x1,y1),(x3,y3)
 
x1+x3 = x0+x2;
x1-x3  =  y2-y0;
y1+y3 =  y0-y2;
y1-y3 =  x0-x2;
 
矩形类似。
 
然后判断线段相交即可。
 
 
注意输入输出格式控制。
 
 
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//*判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= ;
} struct Node
{
char id;
int n;//点数
Point p[];
}node[];
bool cmp(Node a,Node b)
{
return a.id < b.id;
}
char str[];
bool check(Node a,Node b)
{
for(int i = ;i < a.n;i++)
for(int j = ;j < b.n;j++)
if(inter(Line(a.p[i],a.p[(i+)%a.n]),Line(b.p[j],b.p[(j+)%b.n])))
return true;
return false;
}
bool ff[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%s",str) == )
{
if(str[] == '.')break;
node[].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
//cout<<node[0].p[0].x<<" "<<node[0].p[0].y<<endl;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
// cout<<node[0].p[2].x<<" "<<node[0].p[2].y<<endl;
node[].p[].x = ((node[].p[].x+node[].p[].x)+(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)+(node[].p[].x-node[].p[].x))/;
node[].p[].x = ((node[].p[].x+node[].p[].x)-(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)-(node[].p[].x-node[].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
node[].p[].x = node[].p[].x + (node[].p[].x - node[].p[].x);
node[].p[].y = node[].p[].y + (node[].p[].y - node[].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[].n);
for(int i = ;i < node[].n;i++)
{
scanf(" (%lf,%lf)",&node[].p[i].x,&node[].p[i].y);
}
}
n = ;
while(scanf("%s",str)==)
{ //cout<<str<<endl;
if(str[] == '-')break;
node[n].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)+(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)+(node[n].p[].x-node[n].p[].x))/;
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)-(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)-(node[n].p[].x-node[n].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = node[n].p[].x + (node[n].p[].x - node[n].p[].x);
node[n].p[].y = node[n].p[].y + (node[n].p[].y - node[n].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[n].n);
for(int i = ;i < node[n].n;i++)
{
scanf(" (%lf,%lf)",&node[n].p[i].x,&node[n].p[i].y);
}
}
n++;
}
sort(node,node+n,cmp);
for(int i = ;i < n;i++)
{
printf("%c ",node[i].id);
memset(ff,false,sizeof(ff));
int cnt = ;
for(int j = ;j < n;j++)
if(i != j)
if(check(node[i],node[j]))
{
cnt++;
ff[j] = true;
}
if(cnt == )printf("has no intersections\n");
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
printf("%c\n",node[j].id);
break;
}
}
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt==)printf("%c ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
else
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt > )printf("%c, ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
} printf("\n");
}
}
 
 
 
 
 

POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)的更多相关文章

  1. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  2. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  3. 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

    题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...

  4. POJ 3449 Geometric Shapes --计算几何,线段相交

    题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...

  5. POJ 3449 Geometric Shapes

    判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...

  6. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

  7. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  8. TZOJ 2560 Geometric Shapes(判断多边形是否相交)

    描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...

  9. poj3449 Geometric Shapes【计算几何】

    含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板   Geometric Shapes Time Limit: 2000MS   Memory Limit: 655 ...

随机推荐

  1. Android Fragment 真正的完全解析(上) (转载)

    原处: http://blog.csdn.net/lmj623565791/article/details/37970961 自从Fragment出现,曾经有段时间,感觉大家谈什么都能跟Fragmen ...

  2. 51nod1086 背包问题 V2

    我都快不会写二进制优化多重背包了...卡了一下常数从rank100+到20+... #include<cstdio> #include<cstring> #include< ...

  3. Kafka Topic动态迁移 (源代码解析)

    总结下自己在尝试Kafka分区迁移过程中对这部分知识的理解,请路过高手指正. 关于Kafka数据迁移的具体步骤指导,请参考如下链接:http://www.cnblogs.com/dycg/p/3922 ...

  4. 详解Android动画之Frame Animation(转)

    在开始实例讲解之前,先引用官方文档中的一段话: Frame动画是一系列图片按照一定的顺序展示的过程,和放电影的机制很相似,我们称为逐帧动画.Frame动画可以被定义在XML文件中,也可以完全编码实现. ...

  5. boost多边形交集、并集

    交集:http://www.boost.org/doc/libs/1_56_0/libs/geometry/doc/html/geometry/reference/algorithms/interse ...

  6. aspose.Cells 导出Excel

    aspose aspse.Cells可以操作Excel,且不依赖于系统环境. 使用模板,通过绑定输出数据源 这种适合于对格式没有特别要求的,直接绑定数据源即可.和数据绑定控件差不多. Workbook ...

  7. Android的两种上下文的区别

    1.Activity.this,Activity是间接继承自Context 2.getApplicationContext()返回来的就是Context 3.getBaseContext()返回的也是 ...

  8. UE删除空行

  9. Symfony2学习笔记之表单

    对于一个Web开发者来说,处理HTML表单是一个最为普通又具挑战的任务.Symfony2集成了一个Form组件,让处理表单变的容易起来.在这一节里,我们将从基础开始创建一个复杂的表单,学习表单类库中最 ...

  10. pthread_attr_t 线程属性(二)

    一.函数: 1.线程属性的初始化与销毁:#include <pthread.h>int pthread_attr_init(pthread_attr_t *attr);int pthrea ...