Geometric Shapes
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 1243   Accepted: 524

Description

While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be cut into special fluorescent materials. To ensure proper processing, the shapes in the picture cannot intersect. However, some logos contain such intersecting shapes. It is necessary to detect them and decide how to change the picture.

Given a set of geometric shapes, you are to determine all of their intersections. Only outlines are considered, if a shape is completely inside another one, it is not counted as an intersection.

Input

Input contains several pictures. Each picture describes at most 26 shapes, each specified on a separate line. The line begins with an uppercase letter that uniquely identifies the shape inside the corresponding picture. Then there is a kind of the shape and two or more points, everything separated by at least one space. Possible shape kinds are:

• square: Followed by two distinct points giving the opposite corners of the square.
• rectangle: Three points are given, there will always be a right angle between the lines connecting the first point with the second and the second with the third.
• line: Specifies a line segment, two distinct end points are given.
• triangle: Three points are given, they are guaranteed not to be co-linear.
• polygon: Followed by an integer number N (3 ≤ N ≤ 20) and N points specifying vertices of the polygon in either clockwise or anti-clockwise order. The polygon will never intersect itself and its sides will have non-zero length.

All points are always given as two integer coordinates X and Y separated with a comma and enclosed in parentheses. You may assume that |X|, |Y | ≤ 10000.

The picture description is terminated by a line containing a single dash (“-”). After the last picture, there is a line with one dot (“.”).

Output

For each picture, output one line for each of the shapes, sorted alphabetically by its identifier (X). The line must be one of the following:

• “X has no intersections”, if X does not intersect with any other shapes.
• “X intersects with A”, if X intersects with exactly 1 other shape.
• “X intersects with A and B”, if X intersects with exactly 2 other shapes.
• “X intersects with A, B, . . ., and Z”, if X intersects with more than 2 other shapes.

Please note that there is an additional comma for more than two intersections. A, B, etc. are all intersecting shapes, sorted alphabetically.

Print one empty line after each picture, including the last one.

Sample Input

A square (1,2) (3,2)
F line (1,3) (4,4)
W triangle (3,5) (5,5) (4,3)
X triangle (7,2) (7,4) (5,3)
S polygon 6 (9,3) (10,3) (10,4) (8,4) (8,1) (10,2)
B rectangle (3,3) (7,5) (8,3)
-
B square (1,1) (2,2)
A square (3,3) (4,4)
-
.

Sample Output

A has no intersections
B intersects with S, W, and X
F intersects with W
S intersects with B
W intersects with B and F
X intersects with B A has no intersections
B has no intersections

Source

 
 
 
 
题目首先要
根据正方形给出的两个对角线的顶点,求另外两个顶点。
正方形,已知 (x0,y0) 和(x2,y2)  可以根据下列关系求(x1,y1),(x3,y3)
 
x1+x3 = x0+x2;
x1-x3  =  y2-y0;
y1+y3 =  y0-y2;
y1-y3 =  x0-x2;
 
矩形类似。
 
然后判断线段相交即可。
 
 
注意输入输出格式控制。
 
 
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#include <map>
#include <vector>
#include <set>
#include <string>
#include <math.h> using namespace std;
const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(){}
Point(double _x,double _y)
{
x = _x;y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x,y - b.y);
}
//叉积
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;e = _e;
}
};
//*判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <= ;
} struct Node
{
char id;
int n;//点数
Point p[];
}node[];
bool cmp(Node a,Node b)
{
return a.id < b.id;
}
char str[];
bool check(Node a,Node b)
{
for(int i = ;i < a.n;i++)
for(int j = ;j < b.n;j++)
if(inter(Line(a.p[i],a.p[(i+)%a.n]),Line(b.p[j],b.p[(j+)%b.n])))
return true;
return false;
}
bool ff[];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n;
while(scanf("%s",str) == )
{
if(str[] == '.')break;
node[].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
//cout<<node[0].p[0].x<<" "<<node[0].p[0].y<<endl;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
// cout<<node[0].p[2].x<<" "<<node[0].p[2].y<<endl;
node[].p[].x = ((node[].p[].x+node[].p[].x)+(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)+(node[].p[].x-node[].p[].x))/;
node[].p[].x = ((node[].p[].x+node[].p[].x)-(node[].p[].y-node[].p[].y))/;
node[].p[].y = ((node[].p[].y+node[].p[].y)-(node[].p[].x-node[].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[].n = ;
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
scanf(" (%lf,%lf)",&node[].p[].x,&node[].p[].y);
node[].p[].x = node[].p[].x + (node[].p[].x - node[].p[].x);
node[].p[].y = node[].p[].y + (node[].p[].y - node[].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[].n);
for(int i = ;i < node[].n;i++)
{
scanf(" (%lf,%lf)",&node[].p[i].x,&node[].p[i].y);
}
}
n = ;
while(scanf("%s",str)==)
{ //cout<<str<<endl;
if(str[] == '-')break;
node[n].id = str[];
scanf("%s",str);
if(strcmp(str,"square")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)+(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)+(node[n].p[].x-node[n].p[].x))/;
node[n].p[].x = ((node[n].p[].x+node[n].p[].x)-(node[n].p[].y-node[n].p[].y))/;
node[n].p[].y = ((node[n].p[].y+node[n].p[].y)-(node[n].p[].x-node[n].p[].x))/;
}
else if(strcmp(str,"line")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"triangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
}
else if(strcmp(str,"rectangle")==)
{
node[n].n = ;
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
scanf(" (%lf,%lf)",&node[n].p[].x,&node[n].p[].y);
node[n].p[].x = node[n].p[].x + (node[n].p[].x - node[n].p[].x);
node[n].p[].y = node[n].p[].y + (node[n].p[].y - node[n].p[].y);
}
else if(strcmp(str,"polygon")==)
{
scanf("%d",&node[n].n);
for(int i = ;i < node[n].n;i++)
{
scanf(" (%lf,%lf)",&node[n].p[i].x,&node[n].p[i].y);
}
}
n++;
}
sort(node,node+n,cmp);
for(int i = ;i < n;i++)
{
printf("%c ",node[i].id);
memset(ff,false,sizeof(ff));
int cnt = ;
for(int j = ;j < n;j++)
if(i != j)
if(check(node[i],node[j]))
{
cnt++;
ff[j] = true;
}
if(cnt == )printf("has no intersections\n");
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
printf("%c\n",node[j].id);
break;
}
}
else if(cnt == )
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt==)printf("%c ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
else
{
printf("intersects with ");
for(int j = ; j < n;j++)
if(ff[j])
{
if(cnt > )printf("%c, ",node[j].id);
if(cnt==)printf("and %c\n",node[j].id);
cnt--;
}
}
} printf("\n");
}
}
 
 
 
 
 

POJ 3449 Geometric Shapes(判断几个不同图形的相交,线段相交判断)的更多相关文章

  1. POJ 3449 Geometric Shapes 判断多边形相交

    题意不难理解,给出多个多边形,输出多边形间的相交情况(嵌套不算相交),思路也很容易想到.枚举每一个图形再枚举每一条边 恶心在输入输出,不过还好有sscanf(),不懂可以查看cplusplus网站 根 ...

  2. POJ 3449 Geometric Shapes (求正方形的另外两点)

    Geometric Shapes Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1470   Accepted: 622 D ...

  3. 简单几何(线段相交)+模拟 POJ 3449 Geometric Shapes

    题目传送门 题意:给了若干个图形,问每个图形与哪些图形相交 分析:题目说白了就是处理出每个图形的线段,然后判断是否相交.但是读入输出巨恶心,就是个模拟题加上线段相交的判断,我第一次WA不知道输出要按字 ...

  4. POJ 3449 Geometric Shapes --计算几何,线段相交

    题意: 给一些多边形或线段,输出与每一个多边形或线段的有哪一些多边形或线段. 解法: 想法不难,直接暴力将所有的图形处理成线段,然后暴力枚举,相交就加入其vector就行了.主要是代码有点麻烦,一步一 ...

  5. POJ 3449 Geometric Shapes

    判断两个多边形是否相交,只需判断边是否有相交. 编码量有点大,不过思路挺简单的. #include<cstdio> #include<cstring> #include< ...

  6. 线段相交 poj 1066

    // 线段相交 poj 1066 // 思路:直接枚举每个端点和终点连成线段,判断和剩下的线段相交个数 // #include <bits/stdc++.h> #include <i ...

  7. Geometric Shapes - POJ 3449(多边形相交)

    题目大意:给一些几何图形的编号,求出来这些图形都和那些相交.   分析:输入的正方形对角线上的两个点,所以需要求出来另外两个点,公式是: x2:=(x1+x3+y3-y1)/2; y2:=(y1+y3 ...

  8. TZOJ 2560 Geometric Shapes(判断多边形是否相交)

    描述 While creating a customer logo, ACM uses graphical utilities to draw a picture that can later be ...

  9. poj3449 Geometric Shapes【计算几何】

    含[判断线段相交].[判断两点在线段两侧].[判断三点共线].[判断点在线段上]模板   Geometric Shapes Time Limit: 2000MS   Memory Limit: 655 ...

随机推荐

  1. laravel创建新model数据的两种方法

    laravel中的CRUD操作中,通过对代表数据表中row的model对象操作,来更新数据库表. 对于创建新的row的操作,有两种功能上相同的方法: 1.create: $user = User::c ...

  2. core--线程池

    对于服务器-客户端这种架构的软件,通常客户端的数据来自于服务器,如何让一个服务器进程,来满足多个客户端程序的数据请求?一种简单的方法就是,每当一个客户请求来领,服务器就为该客户端创建一个线程.当有10 ...

  3. [转] 解析Qt资源文件使用

    解析Qt资源文件使用 转自:http://mobile.51cto.com/symbian-270121.htm 本文详细的介绍了Qt文件的使用,和大部分GUI框架设计工具一样,Qt也引入了资源文件系 ...

  4. Android用自己的app替换Launcher

    /*********************************************************************** * Android用自己的app替换Launcher ...

  5. POJ 1201 Intervals (差分约束,最短路)

    题意: 有一个集合Z,其元素都是整整数,但是数量未知.现有n个约束,形如 [a,b]=c 表示整数区间[a,b]中有c个元素在Z中出现.问集合Z最小可能含多少个元素? 思路: 对于所给的区间 cnt[ ...

  6. python练习程序(c100经典例2)

    题目: 企业发放的奖金根据利润提成.利润(I)低于或等于10万元时,奖金可提10%:利润高于10万元,低于20万元时,低于10万元的部分按10%提成,高于10万元的部分,可可提成7.5%:20万到40 ...

  7. vim 常用命令总结

    https://www.ibm.com/developerworks/cn/linux/l-cn-tip-vim/ 1 文档开头末尾 [[ 开头 ]]末尾 2 删除全部 :%d 3 剪切.复制.粘贴 ...

  8. 【英语】Bingo口语笔记(49) - 春节请客吃饭的表达

  9. 定时组件quartz系列<一>模拟定时组件小程序

    一.核心概念 Quartz的原理不是很复杂,只要搞明白几个概念,然后知道如何去启动和关闭一个调度程序即可. 1.Job表示一个工作,要执行的具体内容.此接口中只有一个方法void execute(Jo ...

  10. 集合框架null与size=0

    被QA人员一眼指出来的问题,唉,好丢人 上栗子