题目大意:

一个N个点的序列,要将他们全部覆盖,求总最少费用;费用计算: c+(x-y)2

分析:

斜率优化DP

我们假设k<j<i。如果在j的时候决策要比在k的时候决策好,那么也是就是dp[j]+M+(sum[i]-sum[j])^2<dp[k]+M+(sum[i]-sum[k])^2。(因为是最小花费嘛,所以优就是小于)

两边移项一下,得到:(dp[j]+num[j]^2-(dp[k]+num[k]^2))/(2*(num[j]-num[k]))<sum[i]。我们把dp[j]-num[j]^2看做是yj,把2*num[j]看成是xj。

那么不就是yj-yk/xj-xk<sum[i]么?   左边是不是斜率的表示?

那么yj-yk/xj-xk<sum[i]说明了什么呢?  我们前面是不是假设j的决策比k的决策要好才得到这个表示的? 如果是的话,那么就说明g[j,k]=yj-jk/xj-xk<sum[i]代表这j的决策比k的决策要更优。

关键的来了:现在从左到右,还是设k<j<i,如果g[i,j]<g[j,k],那么j点便永远不可能成为最优解,可以直接将它踢出我们的最优解集。为什么呢?

我们假设g[i,j]<sum[i],那么就是说i点要比j点优,排除j点。

如果g[i,j]>=sum[i],那么j点此时是比i点要更优,但是同时g[j,k]>g[i,j]>sum[i]。这说明还有k点会比j点更优,同样排除j点。

排除多余的点,这便是一种优化!

接下来看看如何找最优解。

设k<j<i。

由于我们排除了g[i,j]<g[j,k]的情况,所以整个有效点集呈现一种上凸性质,即k j的斜率要大于j i的斜率。

这样,从左到右,斜率之间就是单调递减的了。当我们的最优解取得在j点的时候,那么k点不可能再取得比j点更优的解了,于是k点也可以排除。换句话说,j点之前的点全部不可能再比j点更优了,可以全部从解集中排除。

于是对于这题我们对于斜率优化做法可以总结如下:

1,用一个单调队列来维护解集。

2,假设队列中从头到尾已经有元素a b c。那么当d要入队的时候,我们维护队列的上凸性质,即如果g[d,c]<g[c,b],那么就将c点删除。直到找到g[d,x]>=g[x,y]为止,并将d点加入在该位置中。

3,求解时候,从队头开始,如果已有元素a b c,当i点要求解时,如果g[b,a]<sum[i],那么说明b点比a点更优,a点可以排除,于是a出队。最后dp[i]=getDp(q[head])。

原文链接  http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html

对于这道题: f[i] = min(f[j] + (a[i]-a[j+1]) ^ 2+c) (N^2)

公式变形+数形结合:f[i] = min{f[j] + a[j+1]^2 - 2*a[i]*a[j+1] + a[i]^2 +C}

令x = a[j+1],y = f[j] + a[j+1]^2;

f[i] = y - 2*a[i]*x + a[i]^2 + C;

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#define maxn 1000005
using namespace std;
typedef long long LL;
LL n,a[maxn];
LL dp[maxn];
int que[maxn];
double judge_k(int x,int y)
{
return (double)(dp[x]+a[x+]*a[x+]-(dp[y]+a[y+]*a[y+]))/((double)(2.0*(a[x+]-a[y+])));
}
int main()
{
int c;
while(scanf("%I64d %d",&n,&c)!=EOF)
{
if(n==&&c==)
break;
for(int i=;i<=n;i++)
scanf("%I64d",&a[i]);
dp[]=;dp[]=c;
que[]=;
que[]=;
int l=,r=;
for(int i=;i<=n;i++)
{
while(l<r&&judge_k(que[l],que[l+])<=a[i]) l++;
dp[i]=dp[que[l]]+c+(a[i]-a[que[l]+])*(a[i]-a[que[l]+]);
while(l<r&&judge_k(que[r],i)<=judge_k(que[r],que[r-])) r--;
que[++r]=i;
}
printf("%I64d\n",dp[n]);
}
return ;
}

hdu 4258 Covered Walkway的更多相关文章

  1. HDU 4258 Covered Walkway 斜率优化DP

    Covered Walkway Problem Description   Your university wants to build a new walkway, and they want at ...

  2. HDU 4258(Covered Walkway-斜率优化)

    Covered Walkway Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  3. BNUOJ 26224 Covered Walkway

    Covered Walkway Time Limit: 10000ms Memory Limit: 131072KB This problem will be judged on HDU. Origi ...

  4. HDU 4258 斜率优化dp

    Covered Walkway Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  5. hdu 4258 斜率DP

    思路:dp[i]=dp[j]+(num[i]-num[j+1])^2; #include<iostream> #include<cstring> #include<alg ...

  6. ACM - 动态规划专题 题目整理

    CodeForces 429B  Working out 预处理出从四个顶点到某个位置的最大权值,再枚举相遇点,相遇的时候只有两种情况,取最优解即可. #include<iostream> ...

  7. HDU 2295 Radar (重复覆盖)

    Radar Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. HDU 1264 Counting Squares(线段树求面积的并)

    Counting Squares Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU 1828 Picture(线段树扫描线求周长)

    Picture Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Su ...

随机推荐

  1. Adriod—— DVM

    Android 运行环境主要指的虚拟机技术——Dalvik.Android中的所有Java程序都是运行在Dalvik VM上的.Android上的每个程序都有自己的线程,DVM只执行.dex的Dalv ...

  2. HDU 1560 DNA sequence A* 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=1560 仔细读题(!),则可发现这道题要求的是一个最短的字符串,该字符串的不连续子序列中包含题目所给的所有字符串 ...

  3. fetch VS AJAX

    fetch('https://mywebsite.com/endpoint/', { method: 'POST', headers: { 'Accept': 'application/json', ...

  4. CSS 垂直居中。

    1,display: table; display: table-cell <div style="border:solid red 1px ;height:200px;width:2 ...

  5. 《算法竞赛入门经典》5.12TeX括号

    /* *在TeX中,左双引号是``,右双引号是''.输入一篇包含双引号的文章,你的任务是把它转换成TeX的格式. *样例输入:"To be or not to be,"quoth ...

  6. "琳琅满屋"调查问卷 心得体会及结果分析

    ·关于心得体会       当时小组提出这个校园二手交易市场的时候,就确定了对象范围,仅仅是面向在校大学生,而且在我们之前就已经有了很多成功的商品交易的例子可以让我们去借鉴,再加上我们或多或少的有过网 ...

  7. struts中拦截器的开发

    1.开发Interceptor类 用户自定义的拦截器一般需要继承AbstractInterceptor类,重写intercept方法 public class UserInterceptor exte ...

  8. android listview getviewtypecount和getItemViewType

    package newdemo.jeno.listviewdemo; import android.app.Activity;import android.os.Bundle;import andro ...

  9. root运行chrome

    os:centos7 edit file : /usr/bin/google-chrome Add "--user-data-dir" (without the quotes) a ...

  10. C语言中输入输出函数

    1.1.1 格式化输入输出函数Turbo C2.0 标准库提供了两个控制台格式化输入. 输出函数printf() 和scanf(), 这两个函数可以在标准输入输出设备上以各种不同的格式读写数据.pri ...