HDU 4862(费用流)
Problem Jump (HDU4862)
题目大意
给定一个n*m的矩形(n,m≤10),每个矩形中有一个0~9的数字。
一共可以进行k次游戏,每次游戏可以任意选取一个没有经过的格子为起点,并且跳任意多步,每步可以向右方和下方跳。每次跳需要消耗两点间的曼哈顿距离减一的能量,若每次跳的起点和终点的数字相同,可以获得该数字的能量。(能量可以为负)
询问k次或更少次游戏后是否可以经过所有的格子,若可以求出最大的剩余能量。
解题分析
带权值的最小K路径覆盖。
(最小路径覆盖数=总节点数-最大匹配数)
将n*m个点,每个点拆成两个,X,Y。
由S向X连容量为1费用为0的边,Y向T连容量为1费用为0的边,X向可到达的Y连容量为1费用为所消耗能量(加上所得)。
这样直接跑可求出最大匹配数。所有未流满的Y点数量即为最小路径覆盖数。
考虑如何实现K路径覆盖。
新建一个点Q,由S向Q连容量为k费用为0的边,有Q向Y连容量为1费用为0的边。即表示可以新增的起点数为k。
这样跑一遍最小费用最大流,若不是满流则说明无解。
参考程序
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; #define V 2008
#define E 1000008
#define INF 200000000
int n,m,k,S,T,Que,num;
int a[V][V],mark[V][V]; int pd[V],dis[V],pre[V];
struct line{
int u,v,c,w,nt;
}eg[E];
int lt[V],sum; void adt(int u,int v,int c,int w) {
eg[++sum].u=u; eg[sum].v=v; eg[sum].c=c;
eg[sum].w=w; eg[sum].nt=lt[u]; lt[u]=sum;
} void add(int u,int v,int c,int w) {
adt(u,v,c,w); adt(v,u,,-w);
//printf("%d %d %d %d\n",u,v,c,w);
} void init(){ sum=; num=;
memset(lt,,sizeof(lt)); char s[V];
scanf("%d %d %d",&n,&m,&k);
for (int i=;i<=n;i++){
scanf("%s",s+);
for (int j=;j<=m;j++)
{
a[i][j]=s[j]-'';
mark[i][j]=++num;
}
} S=; T=num*+;
add(S,T-,k,);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
{
add(S,mark[i][j],,);
add(mark[i][j]+num,T,,);
add(T-,mark[i][j]+num,,);
}
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
for (int k=;k<=n;k++)
for (int l=;l<=m;l++)
if (i==k && l>j || j==l && k>i)
{
int x=abs(i-k)+abs(j-l)-;
if (a[i][j]==a[k][l]) x-=a[i][j];
add(mark[i][j],mark[k][l]+num,,x);
}
n=T;
} bool spfa() {
queue <int> Q;
for (int i=;i<=n;i++) {
dis[i]=INF;
pd[i]=;
pre[i]=-;
}
dis[S]=; pd[S]=; Q.push(S);
while (!Q.empty()) {
int u = Q.front();
for (int i=lt[u];i;i=eg[i].nt)
if (eg[i].c>) {
int v=eg[i].v;
if (dis[u]+eg[i].w<dis[v]) {
dis[v]=dis[u]+eg[i].w;
pre[v]=i;
if (!pd[v]) {
Q.push(v);
pd[v]=;
}
}
}
pd[u]=;
Q.pop();
}
return dis[T]!=INF;
} void minCmaxF(){
int minC=,maxF=,flow;
while (spfa()) {
flow=INF;
for (int i=pre[T];~i;i=pre[eg[i].u])
flow=min(flow,eg[i].c);
for (int i=pre[T];~i;i=pre[eg[i].u]) {
eg[i].c-=flow;
eg[i^].c+=flow;
}
maxF+=flow;
minC+=flow*dis[T];
}
if (maxF==num) printf("%d\n",-minC); else printf("-1\n"); } int main(){
scanf("%d",&Que);
for (int tt=;tt<=Que;tt++){
init();
printf("Case %d : ",tt );
minCmaxF();
}
}
HDU 4862(费用流)的更多相关文章
- Going Home HDU - 1533 费用流
http://acm.hdu.edu.cn/showproblem.php?pid=1533 给一个网格图,每两个点之间的匹配花费为其曼哈顿距离,问给每个的"$m$"匹配到一个&q ...
- hdu 5045 费用流
滚动建图,最大费用流(每次仅仅有就10个点的二分图).复杂度,m/n*(n^2)(n<=10),今年网络赛唯一网络流题,被队友状压DP秒了....难道网络流要逐渐退出历史舞台???.... #i ...
- HDU 3376 费用流 Matrix Again
题意: 给出一个n × n的矩阵,每个格子中有一个数字代表权值,找出从左上角出发到右下角的两条不相交的路径(起点和终点除外),使得两条路径权值之和最大. 分析: 如果n比较小的话是可以DP的,但是现在 ...
- hdu 2686 费用流 / 双线程DP
题意:给一个方阵,求从左上角出到右下角(并返回到起点),经过每个点一次不重复,求最大获益(走到某处获得改点数值),下来时每次只能向右或向下,反之向上或向左. 俩种解法: 1 费用流法:思路转化:从左 ...
- hdu 4406 费用流
这题问题就是当前时刻究竟选择哪门课程,易知选择是和分数有关的,而且是一个变化的权值,所以能够用拆点的方式,把从基础分到100分都拆成点.但若这样拆点的话,跑费用流时就必须保证顺序.这样就麻烦了..观察 ...
- hdu 1853 (费用流 拆点)
// 给定一个有向图,必须用若干个环来覆盖整个图,要求这些覆盖的环的权值最小. 思路:原图每个点 u 拆为 u 和 u' ,从源点引容量为 1 费用为 0 的边到 u ,从 u' 引相同性质的边到汇点 ...
- HDU 3667 费用流 拆边 Transportation
题意: 有N个城市,M条有向道路,要从1号城市运送K个货物到N号城市. 每条有向道路<u, v>运送费用和运送量的平方成正比,系数为ai 而且每条路最多运送Ci个货物,求最小费用. 分析: ...
- HDU 3667 费用流(拆边)
题意:有n个城市(1~n),m条有向边:有k件货物要从1运到n,每条边最多能运c件货物,每条边有一个危险系数ai,经过这条路的费用需要ai*x2(x为货物的数量),问所有货物安全到达的费用. 思路:c ...
- HDU 5644 (费用流)
Problem King's Pilots (HDU 5644) 题目大意 举办一次持续n天的飞行表演,第i天需要Pi个飞行员.共有m种休假计划,每个飞行员表演1次后,需要休假Si天,并提供Ti报酬来 ...
- HDU - 4780费用流
题意:M台机器要生产n个糖果,糖果i的生产区间在(si, ti),花费是k(pi-si),pi是实际开始生产的时间机器,j从初始化到生产糖果i所需的时间Cij,花费是Dij,任意机器从生产糖果i到生产 ...
随机推荐
- 《JavaScript权威指南》读书笔记(三)
日期:2015-12-05 浏览器location和history: replace不会显示历史,location会: history对象脚本不能真正访问,但支持三种方法:back().foward( ...
- 各式各样table
<html> <head> <title>大清帝国</title> <meta name="keywords&quo ...
- Error in Android Studio - "Default Activity Not Found"
Make sure you have specified the default activity in your AndroidManisfest.xml file. Within your def ...
- urlencode在url中的作用
urlencode编码能解决特殊字符的传输问题. 使用urlencode主要用于正常识别输入的汉字.空格以及其他特殊字符. 列如: 一产品名称为A&T Plastic,在产品列表中就产生了这样 ...
- Notepad++ 配置java编译环境
仅限于学习java或小的java程序使用.正常写代码还是eclipse吧 ---------------------分割线----------------------------- 1.配置JDK环境 ...
- 特征值提取之 -- TF-IDF值的简单介绍
首先引用百度百科的话: "TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料 ...
- 源码编译Chrome
官网描述 http://www.chromium.org/developers/how-tos/build-instructions-windows 为啥还要写这篇博客 太久没在这里写博客 Chrom ...
- urlrewrite伪静态 及多参数传递-附正则表达式语法 [轉]
首先 加载 urlrewrite包 配置web.xml [list] [*] <error-page> [*] <error-code>404</ ...
- HTML 中 META的作用
说明: meta是用来在HTML文档中模拟HTTP协议的响应头报文.meta 标签用于网页的<head>与</head>中,meta 标签的用处很多.meta 的属性有两种:n ...
- Android 浮动搜索框 searchable 使用(转)。
Android为程序的搜索功能提供了统一的搜索接口,search dialog和search widget,这里介绍search dialog使用.search dialog 只能为于activity ...