Remainder

Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2255 Accepted Submission(s): 479
Problem Description
Coco is a clever boy, who is good at mathematics. However, he is puzzled by a difficult mathematics problem. The problem is: Given three integers N, K and M, N may adds (‘+’) M, subtract (‘-‘) M, multiples (‘*’) M or modulus (‘%’) M (The definition of ‘%’ is given below), and the result will be restored in N. Continue the process above, can you make a situation that “[(the initial value of N) + 1] % K” is equal to “(the current value of N) % K”? If you can, find the minimum steps and what you should do in each step. Please help poor Coco to solve this problem.

You should know that if a = b * q + r (q > 0 and 0 <= r < q), then we have a % q = r.

 
Input
There are multiple cases. Each case contains three integers N, K and M (-1000 <= N <= 1000, 1 < K <= 1000, 0 < M <= 1000) in a single line.

The input is terminated with three 0s. This test case is not to be processed.

 
Output
For each case, if there is no solution, just print 0. Otherwise, on the first line of the output print the minimum number of steps to make “[(the initial value of N) + 1] % K” is equal to “(the final value of N) % K”. The second line print the operations to do in each step, which consist of ‘+’, ‘-‘, ‘*’ and ‘%’. If there are more than one solution, print the minimum one. (Here we define ‘+’ < ‘-‘ < ‘*’ < ‘%’. And if A = a1a2...ak and B = b1b2...bk are both solutions, we say A < B, if and only if there exists a P such that for i = 1, ..., P-1, ai = bi, and for i = P, ai < bi)

 
Sample Input
2 2 2
-1 12 10
0 0 0
 
Sample Output
0
2
*+
 

题意:(注意题目中的%是指mod)开始给了你n, k, m。。。。每次由+m, -m, *m, modm得到新的N,继续对N这样的操作,直到(n+1) mod k== N mod k时结束。。。并且打印路径

%与mod的区别:%出来的数有正有负,符号取决于左操作数。。。而mod只能是正(因为a = b * q + r (q > 0 and 0 <= r < q), then we have a mod q = r 中r要大于等于0小于q)。。。。。

所以要用%来计算mod的话就要用这样的公式:a mod b = (a % b + b) % b

括号里的目的是把左操作数转成正数

由于新的N可以很大,所以我们每一步都要取%,而且最后要mod k,正常来说每步都%k就行了,但是由于其中的一个操作是N%m,所以我们每一步就不能%k了(%k%m混用会导致%出来的答案错误),而要%(k *m);

思路: 用BFS(广度优先搜索)

import java.io.*;
import java.util.*; /*
* @author denghuilong
*
* 2013-8-14下午5:08:37
*
*/
public class Main {
public String str="+-*%";
public int n,m,k,sum,km;
public boolean boo[]=new boolean[1000*1000*10+1];
public Queue<Node1> list=new LinkedList<Node1>();
public static void main(String[] args) { new Main().work();
}
public void work(){
Scanner sc=new Scanner(new BufferedInputStream(System.in));
while(sc.hasNext()){
list.clear();
Arrays.fill(boo,false);
n=sc.nextInt();
k=sc.nextInt();
m=sc.nextInt();
if(n==0&&k==0&&m==0)
System.exit(0);
Node1 node=new Node1();
node.n=n;
node.s="";
sum=getMode(n+1,k);
km=m*k;
boo[getMode(n,km)]=true;
list.add(node);
BFS();
}
}
public void BFS(){
while(!list.isEmpty()){
Node1 node=list.poll();
if(getMode(node.n,k)==sum){
System.out.println(node.s.length());
System.out.println(node.s);
return;
}
for(int i=0;i<str.length();i++){
int temp=0;
if(str.charAt(i)=='+'){
temp=getMode(node.n+m,km);
}
else if(str.charAt(i)=='-'){
temp=getMode(node.n-m,km);
}
else if(str.charAt(i)=='*'){
temp=getMode(node.n*m,km);
}
else if(str.charAt(i)=='%'){
temp=getMode(getMode(node.n,m),km);
}
if(!boo[temp]){
boo[temp]=true;
Node1 t=node.getNode();
t.n=temp;
t.s=t.s+str.charAt(i);
list.add(t);
}
}
}
System.out.println(0);
}
public int getMode(int a,int b){
return (a%b+b)%b;
}
}
class Node1{
int n;
String s;
Node1(){
n=0;
s="";
}
public Node1 getNode(){
Node1 node=new Node1();
node.n=0;
node.s=s;
return node;
}
}

HDU 1104 Remainder( BFS(广度优先搜索))的更多相关文章

  1. HDU 1104 Remainder (BFS(广度优先搜索))

    Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Sub ...

  2. HDU 1104 Remainder(BFS 同余定理)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1104 在做这道题目一定要对同余定理有足够的了解,所以对这道题目对同余定理进行总结 首先要明白计算机里的 ...

  3. hdu - 1104 Remainder (bfs + 数论)

    http://acm.hdu.edu.cn/showproblem.php?pid=1104 注意这里定义的取模运算和计算机的%是不一样的,这里的取模只会得到非负数. 而%可以得到正数和负数. 所以需 ...

  4. BFS广度优先搜索 poj1915

    Knight Moves Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 25909 Accepted: 12244 Descri ...

  5. 0算法基础学算法 搜索篇第二讲 BFS广度优先搜索的思想

    dfs前置知识: 递归链接:0基础算法基础学算法 第六弹 递归 - 球君 - 博客园 (cnblogs.com) dfs深度优先搜索:0基础学算法 搜索篇第一讲 深度优先搜索 - 球君 - 博客园 ( ...

  6. 图的遍历BFS广度优先搜索

    图的遍历BFS广度优先搜索 1. 简介 BFS(Breadth First Search,广度优先搜索,又名宽度优先搜索),与深度优先算法在一个结点"死磕到底"的思维不同,广度优先 ...

  7. 算法竞赛——BFS广度优先搜索

    BFS 广度优先搜索:一层一层的搜索(类似于树的层次遍历) BFS基本框架 基本步骤: 初始状态(起点)加到队列里 while(队列不为空) 队头弹出 扩展队头元素(邻接节点入队) 最后队为空,结束 ...

  8. 步步为营(十六)搜索(二)BFS 广度优先搜索

    上一篇讲了DFS,那么与之相应的就是BFS.也就是 宽度优先遍历,又称广度优先搜索算法. 首先,让我们回顾一下什么是"深度": 更学术点的说法,能够看做"单位距离下,离起 ...

  9. GraphMatrix::BFS广度优先搜索

    查找某一结点的邻居: virtual int firstNbr(int i) { return nextNbr(i, n); } //首个邻接顶点 virtual int nextNbr(int i, ...

随机推荐

  1. SQL serve创建与调用存储过程

    (1)创建 2编写存储过程(创建传参的存储过程)存储过程语法网络上很多不在累述 语法解析 Use Person 指定在那个数据库下建立存储过程 if (object_id('MyFunction', ...

  2. 使用 UML 进行业务建模:理解业务用例与系统用例的相似和不同之处

    使用 UML 进行业务建模:理解业务用例与系统用例的相似和不同之处   作者:Arthur V. English 出处:IBM   本文内容包括: 背景 业务用例模型与系统用例模型有什么相似之处? 业 ...

  3. 使用mobile jQuery 动态给select下拉添加数据,选中项默认不显示的解决方法。

    getaddress(); function getaddress(type=0,parent='') { var tid=1; $.ajax({ type: "post", ur ...

  4. Application(basic)----Easyui

    一,效果图. 二,源代码. <!DOCTYPE html><html><head> <meta charset="UTF-8"> & ...

  5. hdu 4888 Redraw Beautiful Drawings 网络流

    题目链接 一个n*m的方格, 里面有<=k的数, 给出每一行所有数的和, 每一列所有数的和, 问你能否还原这个图, 如果能, 是否唯一, 如果唯一, 输出还原后的图. 首先对行列建边, 源点向行 ...

  6. Angular form

    参考 http://blog.xebia.com/2013/10/15/angularjs-validating-radio-buttons/ http://stackoverflow.com/que ...

  7. HTTP使用BASIC认证的原理及实现方法(还有NTLM方法,比较复杂)

    一.   BASIC认证概述 在HTTP协议进行通信的过程中,HTTP协议定义了基本认证过程以允许HTTP服务器对WEB浏览器进行用户身份证的方法,当一个客户端向HTTP服务 器进行数据请求时,如果客 ...

  8. 四种常见的提示弹出框(success,warning,error,loading)原生JavaScript和jQuery分别实现

    原文:四种常见的提示弹出框(success,warning,error,loading)原生JavaScript和jQuery分别实现 虽然说现在官方的自带插件已经有很多了,但是有时候往往不能满足我们 ...

  9. swift菜鸟入门视频教程-03-字符串和字符

    本人自己录制的swift菜鸟入门,欢迎大家拍砖.有什么问题能够在这里留言. 主要内容: 字符串字面量 初始化空字符串 字符串可变性 字符串是值类型 使用字符 计算字符数量 连接字符串和字符 字符串插值 ...

  10. activity的生命周期【转】

    关于activity的生命周期,越来越感觉很重要.activity的生命周期有点像asp.net中page的生命周期,经历好几个过程.重写不同的阶段,可以完成不同的功能和效果.先上一张经典的生命周期图 ...