数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新CNT数组和答案. 复杂度是O(NlogN)

------------------------------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
typedef pair<int, int> pii;
 
const int maxn = 200009;
const int maxk = 1000009;
const int INF = 0x3F3F3F3F;
 
inline int read() {
    int ret = 0;
    char c = getchar();
    for(; !isdigit(c); c = getchar());
    for(; isdigit(c); c = getchar())
        ret = ret * 10 + c - '0';
    return ret;
}
 
int N, K, size[maxn], Rt, best, n, CNT[maxk], _n, ANS = INF;
pii T[maxn];
bool vis[maxn];
 
struct edge {
    int to, w;
    edge* next;
} E[maxn << 1], *pt = E, *head[maxn];
  
inline void add(int u, int v, int w) {
    pt->to = v; pt->w = w; pt->next = head[u]; head[u] = pt++;
}
inline void addedge(int u, int v, int w) {
    add(u, v, w); add(v, u, w);
}
 
void dfs(int x, int fa = -1) {
    size[x] = 1;
    int mx = 0;
    for(edge* e = head[x]; e; e = e->next) if(e->to != fa && !vis[e->to]) {
        dfs(e->to, x);
        size[x] += size[e->to];
        mx = max(mx, size[e->to]);
    }
    if((mx = max(mx, n - size[x])) < best) Rt = x, best = mx;
}
 
void DFS(int x, int dist, int cnt, int fa) {
    if(dist > K) return;
    ANS = min(ANS, cnt + CNT[K - dist]);
    T[_n++] = make_pair(dist, cnt++);
    for(edge* e = head[x]; e; e = e->next) if(e->to != fa && !vis[e->to])
        DFS(e->to, dist + e->w, cnt, x);
}
 
void solve(int x) {
    best = INF; dfs(x); x = Rt;
    int p = _n = 0;
    for(edge* e = head[x]; e; e = e->next) if(!vis[e->to]) {
        DFS(e->to, e->w, 1, x);
        for(int i = p; i < _n; i++) 
            CNT[T[i].first] = min(CNT[T[i].first], T[i].second);
        p = _n;
    }
    for(int i = 0; i < _n; i++) CNT[T[i].first] = INF; CNT[0] = 0;
    vis[x] = true;
    for(edge* e = head[x]; e; e = e->next) if(!vis[e->to]) {
        n = size[e->to];
        solve(e->to);
    }
}
 
void init() {
    N = read(); K = read();
    for(int i = 1; i < N; i++) {
        int u = read(), v = read(), w = read();
        addedge(u, v, w);
    }
}
 
int main() {
    init();
    n = N;
    memset(CNT, INF, sizeof CNT); CNT[0] = 0;
    solve(0);
    printf("%d\n", ANS != INF ? ANS : -1);
    
    return 0;
}

------------------------------------------------------------------------------------------

2599: [IOI2011]Race

Time Limit: 50 Sec  Memory Limit: 128 MB
Submit: 1806  Solved: 538
[Submit][Status][Discuss]

Description

给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小.

Input

第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

Output

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

Sample Input

4 3
0 1 1
1 2 2
1 3 4

Sample Output

2

HINT

Source

BZOJ 2599: [IOI2011]Race( 点分治 )的更多相关文章

  1. bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)

    题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...

  2. bzoj 2599 [IOI2011]Race 点分

    [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 4768  Solved: 1393[Submit][Status][Dis ...

  3. bzoj 2599 [IOI2011]Race (点分治)

    [题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...

  4. BZOJ 2599 [IOI2011]Race【Tree,点分治】

    给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...

  5. 【BZOJ】2599: [IOI2011]Race 点分治

    [题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...

  6. bzoj 2599: [IOI2011]Race【点分治】

    点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...

  7. 【刷题】BZOJ 2599 [IOI2011]Race

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  8. BZOJ 2599: [IOI2011]Race

    点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...

  9. 2599: [IOI2011]Race

    2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...

随机推荐

  1. iOS 支持arm_64 和 x86_64 的OpenSSL 静态库(libcrypto.a, libssl.a)

    下载链接

  2. [LeetCode]题解(python):135-Candy

    题目来源: https://leetcode.com/problems/candy/ 题意分析: 有N个孩子站成一条线.每个孩子有个排名.要求1.每个孩子至少一个糖果,2.相邻的孩子,那么较高排名的孩 ...

  3. [LeetCode]题解(python):080-Remove Duplicates from Sorted Array II

    题目来源: https://leetcode.com/problems/remove-duplicates-from-sorted-array-ii/ 题意分析: 跟定一个排好序的数组.修改这个数组使 ...

  4. elaserch 查看节点是否是master

    http://192.168.32.81:9200/_cat/nodes 192.168.32.81 192.168.32.81 3 21 0.00 d * node02 192.168.32.80 ...

  5. Github 初识(上传、下载)

    Git - 版本控制工具Github - 一个网站,提供给用户空间创建git仓储,保存用户的一些数据文档或者代码等GitLab - 基于Git的项目管理软件   上传 1 首先在Github 上注册一 ...

  6. JAVA FILE or I/O学习 - Desktop本地程序学习

    public class DesktopKnow { public void know() { try { Desktop.getDesktop().open(new File("C:\\P ...

  7. Flex的学习资源

    学习网站 http://www.adobe.com/cn/devnet/flex.html Adobe Flex开发人员中心 http://www.adobe.com/cn/devnet/flex/v ...

  8. 从一个App跳转到另一个App

    在跳入App的info中配置Bundle identifier 在跳入App的info中配置URL Schemes 在另一个应用程序中按照上边的操作添加openURL并运行,就可以跳转了 调用open ...

  9. [置顶] Asp.Net底层原理(一、浏览器和服务器的交互原理)

    …… 一.浏览器和服务器的交互原理 二.写自己的"迷你"Asp.net框架 三.Asp.Net的请求与响应过程 1.在此之前,首先简单的模拟一下我们去请求一个网址的时候,浏览器和服 ...

  10. 【剑指offer】面试题43:n个骰子的点数

    第一种思路是,每一个骰子的点数从最小到最大,如果为1-6,那么全部的骰子从最小1開始,我们如果一种从左向右的排列,右边的最低,索引从最低開始,推断和的情况. def setTo1(dices, sta ...