数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新CNT数组和答案. 复杂度是O(NlogN)

------------------------------------------------------------------------------------------

#include<bits/stdc++.h>
 
using namespace std;
 
typedef pair<int, int> pii;
 
const int maxn = 200009;
const int maxk = 1000009;
const int INF = 0x3F3F3F3F;
 
inline int read() {
    int ret = 0;
    char c = getchar();
    for(; !isdigit(c); c = getchar());
    for(; isdigit(c); c = getchar())
        ret = ret * 10 + c - '0';
    return ret;
}
 
int N, K, size[maxn], Rt, best, n, CNT[maxk], _n, ANS = INF;
pii T[maxn];
bool vis[maxn];
 
struct edge {
    int to, w;
    edge* next;
} E[maxn << 1], *pt = E, *head[maxn];
  
inline void add(int u, int v, int w) {
    pt->to = v; pt->w = w; pt->next = head[u]; head[u] = pt++;
}
inline void addedge(int u, int v, int w) {
    add(u, v, w); add(v, u, w);
}
 
void dfs(int x, int fa = -1) {
    size[x] = 1;
    int mx = 0;
    for(edge* e = head[x]; e; e = e->next) if(e->to != fa && !vis[e->to]) {
        dfs(e->to, x);
        size[x] += size[e->to];
        mx = max(mx, size[e->to]);
    }
    if((mx = max(mx, n - size[x])) < best) Rt = x, best = mx;
}
 
void DFS(int x, int dist, int cnt, int fa) {
    if(dist > K) return;
    ANS = min(ANS, cnt + CNT[K - dist]);
    T[_n++] = make_pair(dist, cnt++);
    for(edge* e = head[x]; e; e = e->next) if(e->to != fa && !vis[e->to])
        DFS(e->to, dist + e->w, cnt, x);
}
 
void solve(int x) {
    best = INF; dfs(x); x = Rt;
    int p = _n = 0;
    for(edge* e = head[x]; e; e = e->next) if(!vis[e->to]) {
        DFS(e->to, e->w, 1, x);
        for(int i = p; i < _n; i++) 
            CNT[T[i].first] = min(CNT[T[i].first], T[i].second);
        p = _n;
    }
    for(int i = 0; i < _n; i++) CNT[T[i].first] = INF; CNT[0] = 0;
    vis[x] = true;
    for(edge* e = head[x]; e; e = e->next) if(!vis[e->to]) {
        n = size[e->to];
        solve(e->to);
    }
}
 
void init() {
    N = read(); K = read();
    for(int i = 1; i < N; i++) {
        int u = read(), v = read(), w = read();
        addedge(u, v, w);
    }
}
 
int main() {
    init();
    n = N;
    memset(CNT, INF, sizeof CNT); CNT[0] = 0;
    solve(0);
    printf("%d\n", ANS != INF ? ANS : -1);
    
    return 0;
}

------------------------------------------------------------------------------------------

2599: [IOI2011]Race

Time Limit: 50 Sec  Memory Limit: 128 MB
Submit: 1806  Solved: 538
[Submit][Status][Discuss]

Description

给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小.

Input

第一行 两个整数 n, k
第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

Output

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

Sample Input

4 3
0 1 1
1 2 2
1 3 4

Sample Output

2

HINT

Source

BZOJ 2599: [IOI2011]Race( 点分治 )的更多相关文章

  1. bzoj 2599: [IOI2011]Race (点分治 本地过了就是过了.jpg)

    题面:(复制别人的...) Description 给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. Input 第一行 两个整数 n, k第二..n行 每行三个整数 表示一条无向边的 ...

  2. bzoj 2599 [IOI2011]Race 点分

    [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 4768  Solved: 1393[Submit][Status][Dis ...

  3. bzoj 2599 [IOI2011]Race (点分治)

    [题意] 问树中长为k的路径中包含边数最少的路径所包含的边数. [思路] 统计经过根的路径.假设当前枚举到根的第S个子树,若x属于S子树,则有: ans<-dep[x]+min{ dep[y] ...

  4. BZOJ 2599 [IOI2011]Race【Tree,点分治】

    给出N(1 <= N <= 200000)个结点的树,求长度等于K(1 <= K <= 1000000)的路径的最小边数. 点分治,这道题目和POJ 2114很接近,2114是 ...

  5. 【BZOJ】2599: [IOI2011]Race 点分治

    [题意]给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000.注意点从0开始编号,无解输出-1. [算法]点分治 [题解] ...

  6. bzoj 2599: [IOI2011]Race【点分治】

    点分治,用一个mn[v]数组记录当前root下长为v的链的最小深度,每次新加一个儿子的时候都在原来儿子更新过的mn数组里更新ans(也就是查一下mn[m-dis[p]]+de[p]) 这里注意更新和初 ...

  7. 【刷题】BZOJ 2599 [IOI2011]Race

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  8. BZOJ 2599: [IOI2011]Race

    点分治,定权值,求另一关键字最小 不满足前缀加减性 可以按序遍历,用一数组$t[] 来维护路径为i的最小边数$ 再对于一个直系儿子对应的子树,先算距离求答案再更新$t数组,这样就不会重复$ #incl ...

  9. 2599: [IOI2011]Race

    2599: [IOI2011]Race 链接 分析 被memset卡... 点分治,对于重心,遍历子树,记录一个数组T[i],表示以重心为起点的长度为i的路径中最少的边数是多少.然后先遍历子树,更新答 ...

随机推荐

  1. php内核一 一次请求与结束

    php开始 到 结束 有两个阶段 请求开始之间的初始化阶段 请求之后的结束处理阶段 开始阶段: 模块初始化 模块激活 模块初始化:    在整个SAPI生命周期内,只执行一次(apache服务器启动的 ...

  2. 密码输入模块getpass

    getpass模块用于命令行输入密码,它提供了两个函数.         getpass.getpass([prompt[, stream]])         提示用户输入密码,同时不显示输入的密码 ...

  3. Jquery对select的操作(附日历天数变化代码)

    转载请注明出处. 逃不开传统的四种操作:增.删.改.查. <四处搜刮了jquery对select操作的代码,汇集一下,方便以后查看.日历天数变化代码为原创.> [增]: $("# ...

  4. Oracle 批量造数据

    1.通过存储过程方式 CREATE OR REPLACE procedure XXZY.p_test is i number; begin .. loop INSERT INTO test_job V ...

  5. web api 开发之 filter

     1.使用filter之前应该知道的(不知道也无所谓,哈哈!) 谈到filter 不得不先了解下aop(Aspect Oriented Programming)面向切面的编程.(度娘上关于aop一大堆 ...

  6. Java使用freemarker导出word和excel

    www.linxiaosheng.com/post/2013-12-05/40060346181 https://github.com/upyun/java-sdk

  7. 输出1到最大的N位数

    题目:输入数字n,按顺序输出从1最大的n位10进制数.比如输入3,则输出1.2.3一直到最大的3位数即999. 分析:这是一道很有意思的题目.看起来很简单,其实里面却有不少的玄机. 应聘者在解决这个问 ...

  8. CodeIgniter结合Bootstrap

    CodeIgniter-Bootstrap结合了 cI和bootstrap的长处,一个专注于服务器端,一个专注于ui,这个把2个结合起来了.框架地址: http://www.andyhawthorne ...

  9. 链队列之C++实现

    链队列时建立在单链表的基础之上的.由于是动态分配节点内存,所以无需判满. 链队列的形式如下: 1.队列空 2.队列存在数据 下面介绍下C++实现的链队列,VC6下调试通过. 1.文件组织 2.lq.h ...

  10. 17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication

    17.1.2.1 Advantages and Disadvantages of Statement-Based and Row-Based Replication 基于语句和基于行复制的优点和缺点: ...