显然答案为Σkb·(n-k)a·C(n-k+1,k)。并且可以发现ΣC(n-k,k)=fibn。但这实际上没有任何卵用。

  纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/1]为前i为选了j个1其中第i位是0/1的方案数。这样当然能求出答案,复杂度O(n2)。

  注意到ab很小,并且事实上我们并不需要知道所有的方案数,而是只要求出贡献就可以了。而又有xayb=xa(n-x)b,这个式子显然只要求出所有Σxi就能求了。再由二项式定理,(k+1)b=ΣC(b,i)ki。那么做法就比较显然了,维护上述矩阵大力矩乘即可。

  非常卡常。在bzoj排倒数第二2333

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 190
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,A,B,P,ans,C[N][N];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
struct matrix
{
int n,a[N][N];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<b.n;j++)
for (int k=;k<b.n;k++)
inc(c.a[i][j],1ll*a[i][k]*b.a[k][j]%P);
return c;
}
}f,a;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5298.in","r",stdin);
freopen("bzoj5298.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=n=read(),A=read(),B=read(),P=read();
C[][]=;
for (int i=;i<N;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
f.n=;f.a[][]=;
a.n=A+B+<<;
for (int i=;i<=A+B;i++) a.a[i][i]++,a.a[i+A+B+][i]++;
for (int i=;i<=A+B;i++)
for (int j=i;j<=A+B;j++)
inc(a.a[i][j+A+B+],C[j][i]);
for (;n;n>>=,a=a*a) if (n&) f=f*a;
for (int i=;i<=A+B;i++) inc(f.a[][i],f.a[][i+A+B+]);
for (int i=B;i<=A+B;i++)
if (i-B&) inc(ans,P-1ll*f.a[][i]*ksm(m,A+B-i)%P*C[A][i-B]%P);
else inc(ans,1ll*f.a[][i]*ksm(m,A+B-i)%P*C[A][i-B]%P);
cout<<ans;
return ;
}

BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)的更多相关文章

  1. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  2. poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂

      (Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...

  3. hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)

    题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...

  4. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  5. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  6. [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)

    https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...

  7. BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)

    设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和.矩乘一发即可. #include<iostream> #include<cstdio> ...

  8. 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)

    [BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...

  9. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

随机推荐

  1. 查找linux镜像源中的软件版本并进行安装

    输入以下代码进行软件查找 sudo apt-cache search YourSoftwareName 根据所得到的结果进行安装 sudo apt-get install YourSoftwareNa ...

  2. 树莓派UPS-18650,添加时钟

    1.简介 UPS-18650 是一个专门为树莓派(以下简称 pi)所设计的 UPS 电源,采用两颗标准 的 18650 锂电池进行供电,支持外部电源插入检测,支持边充边放,既插上外部电源时, pi 由 ...

  3. 初识IT行业,人生苦短,我学python

    第一次写,我也不知道该怎么写.只有慢慢的去体会大神们的见解与看法. Python是一个较强的脚本语言,而Java是强类型的编程语言.为了更好的入门,我没有去选择强类型语言的Java,而选择使用Pyth ...

  4. 第一阶段·Linux运维基础-第1章·Linux基础及入门介绍

    01-课程介绍-学习流程 02-服务器硬件-详解 03-服务器核心硬件-服务器型号-电源-CPU 01-课程介绍-学习流程 1.1. 光看不练,等于白干: 1.2 不看光练,思想怠慢: 1.3 即看又 ...

  5. RabbitMQ入门:发布/订阅(Publish/Subscribe)

    在前面的两篇博客中 RabbitMQ入门:Hello RabbitMQ 代码实例 RabbitMQ入门:工作队列(Work Queue) 遇到的实例都是一个消息只发送给一个消费者(工作者),他们的消息 ...

  6. NO--19 微信小程序之scroll-view选项卡与跳转(二)

    本篇为大家介绍为何我们在最后做交互的时候,并没有使用上一篇讲的选项卡的效果.   scroll-view与跳转.gif (如无法查看图片,还请翻看上一篇!) 大家注意看,在我点击跳转后,首先能看到的是 ...

  7. 如何布局您的PC站和移动站,并表达两者之间内容的对应关系

      如何布局您的PC站和移动站,并表达两者之间内容的对应关系 目前较流量的PC站与移动站配置方式有三种,百度站在搜索引擎角度将这三种分别称为跳转适配.代码适配和自适应,以下为这三种配置方式的名词解释及 ...

  8. RAID系列技术详解

    1.RAID 0 RAID 0是把n个物理磁盘虚拟成一个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成一个逻辑上连续,物理上也连续的虚拟磁盘.一级磁盘控制器(指使用这个虚拟磁盘的控制器,如果某台主机 ...

  9. 富文本(wangEditor框架)的使用教程

    富文本的使用教程(wangEditor框架) 一,相信很多人用过很多富文本的框架,现在我向大家推荐一个很实用的一个富文本框架,具有丰富的功能项,容易使用. 所以本博客介绍这个富文本编辑器的使用哈!觉得 ...

  10. Daily Scrum5 11.7

    今日任务: 姓名 任务 时长 徐钧鸿 学习了java连接sqlserver的方法并且实现了连接池 2h 张艺 继续完成和用户管理有关的类的移植(Register.Success.Validate等) ...