BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)
显然答案为Σkb·(n-k)a·C(n-k+1,k)。并且可以发现ΣC(n-k,k)=fibn。但这实际上没有任何卵用。
纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/1]为前i为选了j个1其中第i位是0/1的方案数。这样当然能求出答案,复杂度O(n2)。
注意到ab很小,并且事实上我们并不需要知道所有的方案数,而是只要求出贡献就可以了。而又有xayb=xa(n-x)b,这个式子显然只要求出所有Σxi就能求了。再由二项式定理,(k+1)b=ΣC(b,i)ki。那么做法就比较显然了,维护上述矩阵大力矩乘即可。
非常卡常。在bzoj排倒数第二2333
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 190
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,A,B,P,ans,C[N][N];
inline void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int ksm(int a,int k)
{
int s=;
for (;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
struct matrix
{
int n,a[N][N];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;memset(c.a,,sizeof(c.a));
for (int i=;i<n;i++)
for (int j=;j<b.n;j++)
for (int k=;k<b.n;k++)
inc(c.a[i][j],1ll*a[i][k]*b.a[k][j]%P);
return c;
}
}f,a;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5298.in","r",stdin);
freopen("bzoj5298.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
m=n=read(),A=read(),B=read(),P=read();
C[][]=;
for (int i=;i<N;i++)
{
C[i][]=C[i][i]=;
for (int j=;j<i;j++)
C[i][j]=(C[i-][j-]+C[i-][j])%P;
}
f.n=;f.a[][]=;
a.n=A+B+<<;
for (int i=;i<=A+B;i++) a.a[i][i]++,a.a[i+A+B+][i]++;
for (int i=;i<=A+B;i++)
for (int j=i;j<=A+B;j++)
inc(a.a[i][j+A+B+],C[j][i]);
for (;n;n>>=,a=a*a) if (n&) f=f*a;
for (int i=;i<=A+B;i++) inc(f.a[][i],f.a[][i+A+B+]);
for (int i=B;i<=A+B;i++)
if (i-B&) inc(ans,P-1ll*f.a[][i]*ksm(m,A+B-i)%P*C[A][i-B]%P);
else inc(ans,1ll*f.a[][i]*ksm(m,A+B-i)%P*C[A][i-B]%P);
cout<<ans;
return ;
}
BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)的更多相关文章
- [CQOI2018]交错序列 (矩阵快速幂,数论)
[CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...
- poj 3744 Scout (Another) YYF I - 概率与期望 - 动态规划 - 矩阵快速幂
(Another) YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into th ...
- hdu 2604 Queuing(动态规划—>矩阵快速幂,更通用的模版)
题目 最早不会写,看了网上的分析,然后终于想明白了矩阵是怎么出来的了,哈哈哈哈. 因为边上的项目排列顺序不一样,所以写出来的矩阵形式也可能不一样,但是都是可以的 //愚钝的我不会写这题,然后百度了,照 ...
- Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)
Problem Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)
https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...
- BZOJ4887 Tjoi2017可乐(动态规划+矩阵快速幂)
设f[i][j]为第i天到达j号城市的方案数,转移显然,答案即为每天在每个点的方案数之和.矩乘一发即可. #include<iostream> #include<cstdio> ...
- 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
[BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
随机推荐
- gradle springboot 项目运行的三种方式
一.java -jar 二.eclipse中 Java Application 三.命令行 gradle bootRun
- opengl-glsl
GLSL 着色器是使用一种叫GLSL的类C语言写成的.GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性. 着色器的开头总是要声明版本,接着是输入和输出变量.uniform和mai ...
- CDN的基本原理和基础架构
CDN基本原理 最简单的CDN网络由一个DNS服务器和几台缓存服务器组成: ①当用户点击网站页面上的内容URL,经过本地DNS系统解析,DNS系统会最终将域名的解析权交给CNAME指向的CDN专用DN ...
- 【Docker】第四篇 Docker仓库管理
一.仓库概述 仓库(Repository):Docker仓库主要用于镜像的存储,它是镜像分发.部署的关键.仓库分为公共仓库和私有仓库. 注册服务器(Registry)和仓库区别:注册服务器上往往存放着 ...
- IOS statusBarStyle 设置
在项目info.plist文件中有 View controller-based status bar appearance 属性. 当设置为NO时 通过 [UIApplication sharedAp ...
- 关于SQL while 循环嵌套 外部循环数据无法进入内部循环
下面一般是,作为SQL新手第一次写循环嵌套的办法,但是大家会发现一个问题,那就是变量@i总是不能进入第二个循环. declare @i int ,@j int, @k int set @j = 1 - ...
- 使用Python批量修改数据库执行Sql文件
由于上篇文章中批量修改了文件,有的时候数据库也需要批量修改一下,之前的做法是使用宝塔的phpMyAdmin导出一个已经修改好了的sql文件,然后依次去其他数据库里导入,效率不说极低,也算低了,且都是些 ...
- linux获得命令使用帮助
1. 内部命令: help CMD 2. 外部命令: CMD --help 3. 命令手册: manual(所有命令) man CMD 分章节: 1: 用户命令(User Commands - /bi ...
- 将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachable or the URL may be incorrect
将本地开发完的SDK代码上传到SVN上面:an error occurred while contacting the repository The server may be unreachabl ...
- CS小分队第二阶段冲刺站立会议(5月31日)
昨日成果:查找相关C#资料,清楚一些bug 遇到问题:系统获取的图标分辨率太低,网上找来的获取图标的代码看不太懂 今日计划:完善获取文件图标功能,并且能够删除获取的图标文件